

合成具雙金屬(鈣/鋁)之磁性顆粒以吸附水溶液中磷酸鹽

洪文強¹ 鄭慈儀^{1*} 邱求三²

1.國立宜蘭大學環境工程學系(所)研究生

2.國立宜蘭大學環境工程學系(所) 教授

摘要

磷酸鹽為造成地表水體優養化主要污染物之一,吸附是簡單且高效率去除這種污染 物的有效方法之一。本研究利用磁性顆粒材料作為吸附劑以克服水溶液中微粒的回收問 題。先利用矽酸鈉對磁性顆粒(Fe3O4)的表面做 SiO2 層包覆(SiO2/Fe3O4),以避免磁性顆 粒在水溶液中因水解而遭受破壞,再以硝酸鈣與硝酸鋁對 SiO2 層進行穩定化作用 (Ca-Al/SiO₂/Fe₃O₄)。合成後的吸附劑利用 FT-IR、XRD、VSM 及 BET 作特性分析,並 對水溶液中的磷酸鹽進行吸附實驗。經由最佳吸附 pH 值的探討發現,於水溶液 pH 值 為 6.0 時, Ca-Al/SiO₂/Fe₃O₄對磷酸鹽可達最大的吸附量。在等溫吸附模式探討中發現, Ca-Al/SiO₂/Fe₃O₄ 對磷酸鹽的吸附行為均符合 Langmuir 和 Freundlich 等溫吸附模式,而 其對磷酸鹽最大吸附量 (q_m) 為 35.12 mg g⁻¹,吸附反應的自由能為 -21.17 kJ mol⁻¹。在動 力吸附模式的探討發現 Ca-Al/SiO₂/Fe₃O₄的吸附行為較符合擬二階動力吸附模式,並求 得其活化能為 8.95 kJ mol⁻¹。在脫附實驗條件探討發現,利用 0.05 M 的 NaOH 水溶液 即可有效使 Ca-Al/SiO₂/Fe₃O₄ 脫附磷酸鹽而達到重複再利用的目的。

關鍵詞:磁性顆粒、SiO2、硝酸鋁、硝酸鈣、吸附、磷酸鹽

*通訊作者 E-mail: blessedness sun@hotmail.com

Application of Magnetite Modified with Calcium and Aluminum to Adsorb Phosphate in Aqueous Solution

Wen-Chiang Hung¹, Tzu-Yi Cheng^{1*}, Chyow-San Chiou²

1. Graduate Student, Department of Environmental Engineering, National Ilan University

2. Professor, Department of Environmental Engineering, National Ilan University

ABSTRACT

Phosphate is one of the main contaminants responsible for the eutrophication of surface waters, and adsorption is a potential treatment method of this pollutant. A magnetic adsorbent manufactured from magnetite (Fe₃O₄) can be easily recovered from treated water by magnetic force, without requiring further downstream treatment. In this research, the surface of magnetite modified with calcium, aluminum and silica (Ca-Al/SiO₂/Fe₃O₄) was used to adsorb phosphate in an aqueous solution in a batch system. The optimum solution pH for phosphate adsorption by Ca-Al/SiO₂/Fe₃O₄ was found to be 6.0. The phosphate adsorption behavior by Ca-Al/SiO₂/Fe₃O₄ was in good agreement both with the Langmuir and Freundlich adsorption isotherm, and the maximum adsorption capacity (q_m) and Gibbs free energy of phosphate was 35.12 mg g⁻¹ and -21.17 kJ mol⁻¹, respectively. A pseudo-second-order model could best describe the adsorption kinetics, and the derived activation energy was 8.95 kJ mol⁻¹. The optimum condition to desorb phosphate from Ca-Al/SiO₂/Fe₃O₄ is provided by a solution with 0.05 M NaOH. Magnetic adsorbent is a potential material of water treatment method.

Keywords: Magnetite, Silica, calcium, Aluminum, Adsorben, Phosphate

*Corresponding author E-mail: blessedness_sun@hotmail.com

磷酸鹽為環境水體中常見的污染物質之一,然而,過量的磷酸鹽卻可能會導致水體 優養化和水質惡化(Helaly et al., 1990; Chitrakar et al., 2006), TFT-LCD 製造是台灣主要 工業之一,在蝕刻過程中所產生的廢水通常含有高濃度的磷酸鹽,以及許多工廠如化 肥、半導體及磷酸處理所產生的廢水皆含有高濃度的磷(Battistoni et al., 2006; Grzmil et al. 2006; Park et al., 2008; Warmadewanthi et al., 2009),因此去除廢水中磷酸鹽後再排入水體 是非常必要的。

現行已有多種不同技術於去除廢水中的磷酸鹽,如化學沉澱(Ramadori et al., 1988)、吸附(Li et al., 2009)、逆滲透(Voorthuizen et al., 2005)、生物轉移(De et al., 1988; De et al., 2004)及人工濕地(Prochaska et al., 2006)等方法,在這些方法中,由於吸附後的磷可以高純度磷酸鹼形式被回收,而且在磷脫附後的吸附劑可回收並且再利用,所以吸附法為較具發展性的方法。迄今許多去除磷的吸附劑由沸石(Geelhoed et al., 1997)、鑭及釔化合物(Wasay et al., 1996; Wasay and Tokunaga, 1996)、鋁化合物(Tanada et al., 2003; Kabayama et al., 2005)和飛灰(Grubb et al., 2000)等製成,其中,鈣/ 鋁氧化合物為可能吸附磷的材料之一。

發展中的科技已獲得越來越多的創新,包含使用磁性吸附劑並利用磁性達成固液相 分離。磁性分離目前被廣泛運用在醫藥、診斷、分子生物學、生物無機化學及催化(Chen et al., 2010)領域上。常見的磁性吸附劑是由一般商業磁性顆粒表面利用聚合物(Albornoz et al., 2004)或有機矽烷(Phan et al., 2006)修飾而得,使適當的官能基存在於吸附劑表面。 此外,磁性分離的方法是有利於環境的,因為他不會產生污染物如絮凝劑(Butterworth et al., 2001)。

本研究中,磁性吸附劑是由鈣氧化物及鋁氧化物修飾磁性顆粒而得,並利用其吸附 水中磷酸鹽;合成方法為藉由二氧化矽、硝酸鈣和硝酸鋁來修飾Fe3O4的表面。本研究 為探討磁性吸附劑在不同pH值下的影響、等溫吸附模式、吸附動力學和回收效率。

44

二、實驗方法

2-1 材料

磁鐵礦(Fe₃O₄, 粒徑 < 5 µm)和矽酸鈉均購自Sigma-Aldrich(St. Louis, MO, USA)。 磷酸二氫鉀(KH₂PO₄)、硝酸鋁(Al(NO₃)₃)和維生素丙均購自Acros Organics (Belgium, USA)。其他試藥級化學品由多個供應商提供。

2-2儀器

合成吸附劑的官能基使用FTIR(Spectrum 100, Perkin Elmer, USA)測量。吸附劑的比 表面積和孔徑(BET方法)使用粒徑分析儀(ASAP 2000C, Micromeritics, USA)測定。磁性 分析使用震動樣品磁度儀(Vibrating Sample Magnetometer, VSM, Lake Shore 7407, Lake Shore, USA)分析。物質的晶格結構由XRD (Theta Probe, Thermo Scientific, UK)測定。磷 酸鹽濃度測定使用環保署公告之檢測方法-分光光度計/維生素丙法(Lambda 25, Perkin Elmer, USA),於波長為880 nm進行分析(江漢全, 2005)。

2-3 吸附劑的合成

2-3-1 SiO₂/Fe₃O₄

將20g的Fe₃O₄及1.08L的蒸餾水在燒杯中進行混合,並將溫度升至為90°C;在升溫 過程中攪拌並同時加入0.1N的NaOH,將其pH維持在9.5。在100mL的去離子水中溶解 適量的矽酸鈉並加入前者Fe₃O₄水溶液混合。使用5NH₂SO₄將此混合液pH調整到6並持 續攪拌30分鐘。藉由硫酸使單體聚合矽酸凝膠形成矽塗層(Iler et al., 1979)。最後,藉由 外部磁場將吸附劑分離且用去離子水反覆清洗,直到吸附劑pH值變成7。將製備完的 SiO₂/Fe₃O₄利用烘箱105℃烘乾8小時後將其取出並保存。

2-3-2 Ca-Al/SiO₂/Fe₃O₄

為避免製備的 SiO₂/Fe₃O₄溶解於水溶液中,所以使用鈣/鋁離子修飾 SiO₂/Fe₃O₄(Iler et al., 1979)。我們在本研究中,取 12 g 的 SiO₂/Fe₃O₄與適當比例的硝酸鈣及硝酸鋁,加入 0.4 L 的蒸餾水中,並在升溫至 55℃的過程中持續攪拌,反應所得的產物在降溫後藉

由外部磁場將吸附劑分離且用去離子水反覆清洗,至其溶液的 pH 值不再變化,將清洗 完的產物放入烘箱,以105℃烘乾後以乾燥箱保存。

2-4 吸附實驗

進行對吸附的pH影響(3.0~9.0)、動力實驗(0~5 h)、等溫吸附(最初濃度250~450 mg-P L⁻¹)和熱力學(283~313 K)研究,進而調查水溶液中磷酸鹽的吸附。將0.5 g吸附劑 放入50 mL的溶液中,等溫吸附實驗溫度控制在298 K,整個反應pH值保持在一恆定值 且平衡時間為24小時。吸附達平衡後,再藉由外部磁場將其固液分離。使用分光光度儀 分析在水溶液中磷酸鹽的濃度。

2-5 脫附實驗

在實驗脫附效率中,分別配製 0.01~1 M 的 NaOH 水溶液 100 mL,並將已吸附完 磷酸鹽的 Ca-Al/SiO₂/Fe₃O₄ 吸附劑取 1.0 g 放入其中,進行恆溫震盪且脫附時間 24 小 時。脫附效率(DE)由公式定義; DE = $(C \times V) \times 100\%/(q \times m)$,其中 C 為在脫附溶液中的 磷酸鹽濃度,V 為脫附溶液的體積,q (mg g⁻¹)為在脫附實驗前吸附劑對磷酸鹽吸附的 量,m(g)為在脫附實驗中吸附劑所使用的量。

2-6 重複實驗

將經過氫氧化鈉前處理過後的 Ca-Al/SiO₂/ Fe₃O₄ 再以蒸餾水清洗,清洗吸附劑至水溶液 pH 值不再改變,清洗完後的吸附劑置於烘箱中以 105℃烘乾。

配置濃度為 250 ppm 磷酸鹽溶液 100 mL,加入1g 經過脫附的 Ca-Al/SiO₂/Fe₃O₄, 調整溶液 pH 值至 6.0 ± 0.1 後,在 25℃下恆溫震盪 24 小時,在恆溫震盪的過程中持續 調整 pH 值為 6.0 ± 0.1,反應完後過濾適量溶液,以分光光度計測量其殘餘磷酸鹽濃度。 重覆進行上述吸附與脫附步驟,進以了解改質後磁性吸附劑可重複利用之可行性。

三、結果與討論

3-1 磁性吸附劑的特性分析

3-1-1 FTIR

圖 1 為 Fe₃O₄、SiO₂/Fe₃O₄和製備磁性吸附劑(Ca-Al/SiO₂/Fe₃O₄)的 FTIR 圖譜。圖中 顯示三個吸附劑大約在 3300 cm⁻¹ (O-H 伸縮)和 550 cm⁻¹ (Fe-O 震動)有兩個特性波峰, 這可能是 Fe₃O₄(Butterworth et al., 2001)中的 FeOH。SiO₂/Fe₃O₄和 Ca-Al/SiO₂/Fe₃O₄(Xue et al., 2009; Yang et al., 2006)在 1100 cm⁻¹的波峰顯示有 Si-O-Si 伸縮鍵。結果證實, SiO₂ 成功地包覆在 Fe₃O₄上。此外,Ca-Al/SiO₂/Fe₃O₄在 1384 cm⁻¹ (Al-O 彎曲)的位置有波峰; 此波峰表示 SiO₂/Fe₃O₄ 的表面含有鋁鍵。在 IR 光譜中,Ca-Al/SiO₂/Fe₃O₄ 大約在 3300-3500 cm⁻¹(Al-O 伸縮)也有特性波峰,但此波峰由 O-H 伸縮吸收被干擾。

圖 1. Fe₃O₄、SiO₂/Fe₃O₄和改質磁性吸附劑(Ca-Al/SiO₂/Fe₃O₄)的 FTIR 圖譜

3-2-2 BET、XRD 及 VSM

表 1 為不同吸附劑 Fe₃O₄、SiO₂/Fe₃O₄、Ca-Al/SiO₂/Fe₃O₄的 BET(比表面積)分析數 據。由 BET 的分析數據可看出,表面未包覆 SiO₂的磁性顆粒,表面積僅有 18.06 m²g⁻¹。 然而,在適當的 pH 值條件下(Iler et al., 1979),SiO₂ 可在 Fe₃O₄的表面進行聚合形成 SiO₂/Fe₃O₄,使表面積增加至 114.02 m²g⁻¹。推論其原因為 SiO₂在 Fe₃O₄表面並不是完 整的平面包覆,導致 SiO₂/Fe₃O₄表面的孔隙會增加,所以 SiO₂/Fe₃O₄的表面積會大於 Fe₃O₄。再以鈣/鋁改質 SiO₂/Fe₃O₄後,其表面積減少為 48.44 m²g⁻¹,顯示 SiO₂ 晶格孔隙 被 Ca 及 Al 所佔據,導致表面積減少。

表 1. Fe₃O₄、SiO₂/Fe₃O₄及改質磁性吸附劑(Ca-Al/SiO₂/Fe₃O₄)的 BET 數據

Magnetic catalyst	Surface area $(m^2 g^{-1})$		
Fe ₃ O ₄	18.06		
SiO ₂ /Fe ₃ O ₄	114.02		
Ca-Al/SiO ₂ /Fe ₃ O ₄	48.44		

圖 2 為不同吸附劑 Fe_3O_4 、 SiO_2/Fe_3O_4 、 $Ca-Al/SiO_2/Fe_3O_4$ 之 XRD 圖譜。根據與粉 末繞射標準聯合委員會(Joint Committee on Powder Diffraction Standards, abbreviated as JCPDS)出版的標準繞射資料比較可看出,三種吸附劑皆存在與標準資料中 Fe_3O_4 相同的 特性峰($2\theta = 30.1^{\circ}$ 、 35.5° 、 43.1° 、 53.4° 、 57.0° 、 62.6°),分別對應到 Fe_3O_4 (220)、(311)、 (400)、(422)、(511)與(440)的晶面,由此可知,不論是經過包覆或是改質過後,SiO₂/Fe₃O₄ 與 Ca-Al/SiO₂ / Fe_3O_4 皆保有磁性顆粒 Fe_3O_4 的基本晶形存在。

圖 2. Fe₃O₄、SiO₂/Fe₃O₄及改質磁性吸附劑(Ca-Al/SiO₂/Fe₃O₄)的 XRD 圖譜

圖 3 為不同吸附劑 Ca-Al/SiO₂/Fe₃O₄、SiO₂/Fe₃O₄及 Fe₃O₄的磁性分析(Vibrating Sample Magnetometer, VSM)。由實驗結果可得到 Fe₃O₄的飽和磁化量(Mass saturation magnetization, M_s)為 82.3 emu g⁻¹,在文獻中這是很好的值(Shi et al., 2006)。而當磁性顆粒表面包覆 SiO₂ 及表面經鈣/鋁改質之後,飽和磁化量(M_s)即由 82.3 emu/g 減少至 9.22 emu/g。此結果可歸因於包覆在磁性顆粒表面的 Ca/Al/SiO₂ 並不具有磁性,導致 Ca-Al/SiO₂/Fe₃O₄的飽和磁化量(M_s)的減少(Vestal et al., 2002)。另外,由圖 3 中顯示在 室溫下 Fe₃O₄ 及 Ca-Al/SiO₂/Fe₃O₄都具有非常弱的磁滯現象(Xu et al., 2008; Pankhurst et al., 2003),表示即使磁性顆粒經過 Ca-Al/SiO₂ 改質後,其磁力特性亦非常接近順磁性。

圖 3. Fe₃O₄、SiO₂/Fe₃O₄及 Ca-Al/SiO₂/Fe₃O₄的 VSM

3-2 吸附磷離子的 pH 效應

部分陰離子(磷酸鹽、硝酸鹽、砷等)吸附劑經由靜電引力和配位體交換來吸附, 且溶液 pH 值在吸附行為中可能扮演重要的角色(Xue et al., 2009)。

圖 4 表示, 在不同的 pH 值溶液中四種吸附劑(活性碳、Fe₃O₄、SiO₂/Fe₃O₄和 Ca-Al/SiO₂/Fe₃O₄)對磷酸根離子的吸附行為。結果顯示, pH 值並不影響活性碳和 SiO₂/Fe₃O₄的磷酸根離子的吸附行為, 然而 Fe₃O₄和 Ca-Al/SiO₂/Fe₃O₄與 pH 值有關。 SiO₂/Fe₃O₄的 pH_{zpc}(pH 的零電荷)值為 2.3, 所以在 pH 值 3 到 9 時表面為負電荷。因此, 可能是因為在這些 pH 值中的 SiO₂/Fe₃O₄表面排斥磷酸根離子, 而使 SiO₂/Fe₃O₄對磷酸 根離子的吸附能力幾乎為零。

至於活性碳,在pH值3到9時對磷酸根離子的吸附能力大約為13mgg⁻¹。活性碳 由液體中吸附磷酸鹽,過程如下:首先,磷酸鹽移動並擴散到碳粒子內部的孔隙中。一 旦進入孔隙結構,磷酸鹽藉由凡得瓦耳力被吸引到內表面的孔隙結構。這種類型的吸附 稱為物理吸附,其中活性炭是用來吸附目標化合物為最常見的吸附類型。圖 4 結果表 示,活性炭的物理吸附將不會受 pH 值影響吸附能力。

至於 Fe₃O₄,在 pH 值 3 到 9 時對磷酸根離子的吸附能力大約為 2~4 mg g⁻¹,其 pH_{zpc} 約為 7。當溶液 pH 低於 7 時,Fe₃O₄ 表面為正電荷;因此,在 pH 值低於 7,Fe₃O₄ 能吸 引磷酸鹽陰離子。在液體中磷酸鹽解離平衡與 pH 有關,他們可表示為(Perrin et al., 1974) $H_{3}PO_{4} \leftarrow \frac{K_{1}}{2} H_{2}PO_{4}^{-} \leftarrow \frac{K_{2}}{2} \rightarrow HPO_{4}^{2-} \leftarrow \frac{K_{3}}{2} \rightarrow PO_{4}^{3-}$,

其中 pK₁ = 2.15、 pK₂ = 7.20 和 pK₃ = 12.33。水溶液 pH 介於 3 到 7;在這 pH 範圍的溶 液中,磷酸鹽主要為一價 H₂PO₄⁻和二價 HPO₄²⁻, Fe₃O₄可藉由靜電吸引力對磷酸鹽進行 吸附。磷酸鹽吸附量隨溶液的 pH 值增加而減少,可能是因為在較高 pH 值下 Fe₃O₄ 的表 面負電荷增加,進而削弱 Fe₃O₄與磷酸根離子的靜電吸引 (Ma et al., 2006; Chitrakar et al., 2006)。

圖 4 顯示,吸附劑對磷酸根離子的吸附能力最高為 Ca-Al/SiO₂/Fe₃O₄,可能的原因 是其官能基有利於吸附(Kasama et al., 2004),且在低的 pH 值,吸附劑表面羥基質子化 形成-OH²⁺,其比羥基(-OH)更容易離開吸附劑表面(Antelo et al., 2005),促使鈣/鋁離子 與磷酸鹽增加接觸的機會。且 Ca-Al/SiO₂/Fe₃O₄ 的 pH_{zpc} 約為 7.2,意即溶液 pH 值低於 7.2 時,磷酸鹽因靜電吸引力吸附而具有較佳吸附量。

圖 4. SiO₂/Fe₃O₄、Ca-Al/SiO₂/Fe₃O₄、活性碳及 Fe₃O₄對磷酸鹽吸附的效應

3-3 磷酸鹽等溫吸附

等溫吸附表示,如何用吸附劑吸附磷酸鹽且如何在固定的 pH 值及溫度下隨吸附濃度的變化而吸附。表 2 為 Ca-Al/SiO₂/Fe₃O₄ 吸附磷酸鹽的等溫平衡數據,它們均設有符合 Langmuir 和 Freundlich 等溫方程式(Wong et al., 2003; Ho et al., 1998)。Langmuir 等溫方程式表示如下:

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m k_L} \tag{1}$$

其中 q_e 為平衡濃度下的吸附量(mg g⁻¹); C_e 為在平衡濃度(mg L⁻¹); q_m 為最大吸附量(mg g⁻¹); k_L 為Langmuir常數(L mg⁻¹); 線性形式的Freundlich方程表示如下:

$$\log q_e = \log k_F + \frac{1}{n} \log C_e \tag{2}$$

其中 k_F 為 Freundlich 常數 (L mg⁻¹); n 為常數。

表 2. 在磷酸鹽溶液 pH 值為 6.0、Ca-Al/SiO₂/Fe₃O₄ 10 g L⁻¹、反應時間 24 h 及溫度 298 K 的條件下 Ca-Al/SiO₂/Fe₃O₄ 吸附劑對磷酸鹽吸附的等溫吸附結果

Equilibrium concentration	Adsorption quantity	
$(C_e, \operatorname{mg L}^{-1})$	$(mg g^{-1})$	
38.17	20.38	
54.72	24.02	
93.40	26.66	
116.81	28.39	
141.91	29.82	
	Equilibrium concentration $(C_e, \text{ mg L}^{-1})$ 38.17 54.72 93.40 116.81 141.91	

表 3 為 q_e 和 k_L 的數值,是決定從斜率和 C_e / q_e 對 C_e 的線性截距;然而, k_F 和 1/n是決定從斜率和 ln q_e 對 ln C_e 的線性截距。由表 3 顯示產生的相關係數符合 Langmuir 方程式和 Freundlich 方程式。根據 Langmuir 方程式表示,由 Ca-Al/SiO₂/Fe₃O₄ 最大吸附 量(q_m)發現為 35.12 mg-P g⁻¹。此外,將所得到的 k_L 帶入熱力學方程式(式(3))求得其自由 能(ΔG^0)為-21.17 kJ mol⁻¹。

$$\Delta G^0 = -RT \ln(k_I) \tag{3}$$

表 3. Ca-Al/SiO₂/Fe₃O₄吸附劑對磷酸鹽吸附分別以不同類型的參數值對等溫吸附模式的 實驗結果

Langmuir			Freundlich		
Q_m	k_L	R^2	n	k_F	R^2
$(mg-Pg^{-1})$	(L mg ⁻¹)				
35.12	0.037	0.9885	3.64	2.43	0.9753

3-4 吸附動力

圖 5 顯示,在不同溫度下不同接觸時間Ca-Al/SiO₂/Fe₃O₄對磷酸鹽的吸附效果。在 25℃時,磷酸鹽的吸附反應在早期階段吸附發生迅速,可能是因為對吸附劑活性中心有 大量的可利用性。然而,在本體溶液中活性中心數量逐漸減少,吸附反應變得較緩慢。 在其他溫度(10℃及40℃)下磷酸鹽的吸附,發現與25℃類似現象。

圖 5. 在不同溫度下不同時間Ca-Al/SiO₂/Fe₃O₄對磷酸鹽的吸附量

吸附動力數據較常使用的動力學模式,即擬一階和擬二階動力學模式,分別可藉由線性方程式(4)及(5)表示(Mellah et al., 2006):

$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t \tag{4}$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(5)

其中 $q_t (\text{mg g}^{-1})$ 為某時間 t(min)吸附量; $q_e (\text{mg g}^{-1})$ 為平衡濃度下的吸附量; $k_1 (\text{min}^{-1})$ 和

k2 (g (mg·min)⁻¹)分別為擬一階和擬二階動力學模式動力速率常數。表 4 為 Ca-Al/SiO₂/Fe₃O₄ 吸附磷酸鹽對不同參數動力模式的實驗結果。由表 4 結果顯示,在不 同溫度反應下,擬二階動力學模式比擬一階動力學模式有較高的相關性。此外,由表 4 中 動力速率常數(k₂)對 1/T 作圖所得之斜率與截距,代入 Arrhenius 方程式(式(6)),可求得 Ca-Al/SiO₂/Fe₃O₄ 對吸附磷酸鹽的的活化能(*E_a*)為 8.95 kJ mol⁻¹。

$$lnk = lnA - E_{a}/RT \tag{6}$$

其中A、E_a、T及R分別為頻率因子、活化能、溫度(K)及氣體常數。

Treatments		R^2		Rate Constants	Activated Energy
		1 st order	2 nd order	k_2 (g mg ⁻¹ min ⁻¹)	E_a (kJ mole ⁻¹)
10°C Temperature 25°C	10°C	0.756	0.997	0.0066	
	0.727	0.997	0.0074	8.95	
	40°C	0.746	0.999	0.0096	

表 4. Ca-Al/SiO₂/Fe₃O₄吸附磷酸鹽對不同參數動力模式的實驗結果

3-5 脫附和重複使用

良好的吸附劑能實際應用的重要因素為能脫附且再生的能力,圖4 顯示,溶液pH 值增加導致Ca-Al/SiO₂/Fe₃O₄對磷酸鹽的吸附能力下降,因此可推測已吸附磷酸鹽的吸附 劑在高pH值下可能會進行脫附。因此在脫附實驗中使用不同濃度的NaOH溶液做研究。 圖6 顯示不同NaOH濃度的脫附效率。值得注意的是,NaOH濃度大於0.05 M時即達到最 大脫附效率,低於0.05 M則會導致脫附效率降低。由此結果發現,0.05 M 的NaOH濃度 為脫附磷酸鹽最佳條件。

為了確定Ca-Al/SiO₂/Fe₃O₄的重複利用性,將吸附過磷酸鹽的Ca-Al/SiO₂/Fe₃O₄以濃 度為0.05M的NaOH脫附後,進行再吸附,重複吸附次數為3次。結果如圖7所示。在第二 次循環中,回收的Ca-Al/SiO₂/Fe₃O₄吸附能力大約降低至36.6%。吸附能力降低可能由於 在回收過程中Fe₃O₄表面包覆的鈣/鋁分離。為了防止核心層表面分離與維護合成磁性吸 附劑的功能,進一步的調查是必要。

圖 6. 溶液中不同NaOH濃度Ca-Al/SiO₂/Fe₃O₄對磷酸鹽的脫附效應

圖 7. Ca-Al/SiO₂/Fe₃O₄吸附磷酸鹽重複使用效應

四、結論

鈣/鋁修飾矽膠磁鐵礦, Ca-Al/SiO₂/Fe₃O₄,使用硝酸鈣/硝酸鋁作為表面修飾劑來合成;鈣/鋁陽離子行為當作磷酸鹽吸收劑。經由 pH 效應的探討發現,Ca-Al/SiO₂/Fe₃O₄ 於 pH 值為 6.0 時,對磷酸鹽具有較佳的吸附量。而在等溫實驗中發現,Ca-Al/SiO₂/Fe₃O₄ 對磷酸鹽的吸附行為均符合 Langmuir 和 Freundlich 等溫吸附模式,而其對磷酸鹽最大吸 附量(q_m)及吸附反應的自由能分別為 35.12 mg g⁻¹ 和 -21.17 kJ mol⁻¹。在吸附動力模式中 擬二階模式為較好的描述,而其活化能為 8.95 kJ mol⁻¹。在脫附實驗條件探討發現,0.05 M 的 NaOH 水溶液對 Ca-Al/SiO₂/Fe₃O₄ 可達到脫附磷酸鹽的目的。由實驗結果得知,磁 性吸附劑可作為一種有效的水處理方法。由於磁性吸附劑是一種有效的水處理方法,這 項研究結果將有助於硝酸鈣/硝酸鋁改質 SiO₂/Fe₃O₄ 應用於去除水溶液中的磷酸鹽研究 探討。

參考文獻

- APHA, AWWA, WEF, *Standard methods for the examination of water and wastewater*, 20th ed., Method 4500 P G, American Public Health Association, Washington, DC, 1998, pp. 4.149–4.150.
- APHA, AWWA., WEF, *Standard methods for the examination of water and wastewater*, 20th ed., Method 4500-SiO₂-C, American Public Health Association, Washington, DC, 1998, pp. 4.156–4.157.
- Albornoz, C., Sileo, E.E., Jacobo, S.E., 2004, "Magnetic polymers of maghemite (g-Fe₂O₃) and polyvinyl alcohol," *Physica B*, Vol. 354, pp. 149–153.
- Antelo, J., Avena, M., Fiol, S., Lopez, R., Arce, F., 2005, "Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface," *Journal of Colloid and Interface Science*, Vol. 285, pp. 476–486.
- Battistoni, P., Carniani, E., Balboni, V., Tonabuoni, P., 2006, "Chemical-physical pretreatment of phosphogypsum leachate," *Industrial and Engineering Chemistry Research*, Vol. 45, pp. 3237–3242.
- Butterworth, M.D., Illum, L., Davis, S.S., 2001, "Preparation of ultrafine silica- and

PEG-coated magnetite particles," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, Vol. 179, pp. 93–102.

- Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., Hirotsu, T., 2006, "Phosphate adsorption on synthetic goethite and akaganeite," *Journal of Colloid and Interface Science*, Vol. 298, pp. 602–608.
- Chen, H.W., Kuo, Y.L., Chiou, C.S., You, S.W., Ma, C.M., Chang, C.T., 2010, "Mineralization of Reactive Black 5 in Aqueous Solution by Ozone/H₂O₂ in the Presence of a Magnetic Catalyst," *Journal of Hazardous Materials*, Vol. 174, pp. 795–800.
- De, L.N.J., De, P.N., 1988, "The potential of microalgal biotechnology: A review of production and uses of microalgae," *Biotechnology Advance*, Vol. 6, pp. 725-770.
- De, B.L.E., Bashan, Y., 2004, "Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003)," *Water Research*, Vol. 38, pp. 4222–4246.
- Geelhoed, J.S., Hiemstra, T., Van, R.W.H., 1997, "Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption," *Geochimica et Cosmochimica Acta*, Vol. 61, pp. 2389–2396.
- Grubb, D.G., Guimaraes, M.S., Valencia, R., 2000, "Phosphate immobilization using acidic type F fly ash," *Journal of Hazardous Materials*, Vol. 76, pp. 217–236.
- Grzmil, B., Wronkowski, J., 2006, "Removal of phosphates and fluorides from industrial wastewater," *Desalination*, Vol. 189, pp. 261–268.
- Helaly, P.M., Si, A.E., 1990, "Protection of surface water frome eutrophication via controlled release of phosphate fertilizer," *Journal of Controlled Release*, Vol. 12, pp. 39–44.
- Ho, Y.S., McKay, G., 1998, "Kinetic models for the sorption of dye from aqueous solution by wood," *Transactions of the Institution of Chemical Engineers*, Vol. 76B, pp. 183–191.
- Iler, R.K., The Chemistry of Silica, John Wiley & Sons, New York, 1979.
- Kabayama, M., Sakiyama, T., Kawasaki, N., Nakamura, T., Araki, M., Tanada, S., 2003, "Characteristics of Phosphate ion adsorption-desorption onto aluminum oxide hydroxide," *Journal of Chemical Engineering of Japan*, Vol. 36, pp. 499–504.
- Kasama, T., Watanabe, Y., Yamada, H., Murakami, T., 2004, "Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH," *Applied Clay Science*, Vol. 25, pp. 167–177.
- Kabayama, M., Kawasaki, N., Nakamura, N., Tanada, S., 2005, "Adsorption/desorption characteristics of phosphate ion onto calcined boehmite surface," *Journal of Surface*

Nanotechnology, Vol. 3, pp. 63-69.

- Li, Z., Tang, X., Chen, Y., Wang, Y., 2009, "Behaviour andmechanism of enhanced phosphate sorption on loess modified with metals: equilibrium study," *Journal of Chemical Technology and Biotechnology*, Vol. 84, pp. 595–603.
- Ma, J., Zhu, L., 2006, "Simultaneous sorption of phosphate and phenanthrene to inorgano -organo-bentonite from water," *Journal of Hazardous Materials*, Vol. 136, pp. 982–988.
- Mellah, A., Chegrouche, S., Barkat, M., 2006, "The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations," *Journal of Colloid and Interface Science*, Vol. 296, pp. 434–441.
- Perrin, D.D., Dempsey, B., *Buffers for pH and Metal Ion Control*, Chapman and Hall, London, 1974.
- Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., 2003, "Application of magnetic nanoparticles in biomedicine," *Journal of Physics D*, Vol. 36, pp. R167–R181.
- Phan, N.T.S., Jones, C.W., 2006, "Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts," *Journal* of *Molecular Catalysis A: Chemical*, Vol. 253, pp. 123–131.
- Prochaska, C.A., Zouboulis, A.I., 2006, "Removal of phosphate by pilot vertical-flow constructed wetland using a mixture of sand and dolomite as substrate," *Ecological Engineering*, Vol. 26, pp. 293–303.
- Park, J.Y., Byun, H.J., Choi, W.H., Kang, W.H., 2008, "Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater," *Chemosphere*, Vol. 70, pp. 1429–1437.
- Ramadori, R., Pinto, A.C.D., Tandoi, V., Sasso, C., 1988, "Chemical Precipation of Phosphate From Sewage At Low Lime Dosage," *Studies in Environmental Science*, Vol. 34, pp. 223–233.
- Shi, Y.L., Qiu, W., Zheng, Y., 2006, "Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst," *Journal of Physics and Chemistry of Solids*, Vol. 67, pp. 2409–2418.
- Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., Tamura, T., 2003, "Removal of phosphate by aluminum oxide hydroxide," *Journal of Colloid and Interface Science*, Vol. 257, pp. 135–140.

- Vestal, C.R., Zhang, Z.J., 2002, "Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe₂O₄/Polystyrene Core/Shell Nanoparticles," *Journal of the American Chemical Society*, Vol. 124, pp. 14312–14313.
- Voorthuizen, E., Zwijnenburg, A., Wessling, M., 2005, "Nutrient removal by NF and RO membranes in a decentralized sanitation system," *Water Research*, Vol. 39, pp. 3657–3667.
- Wasay, S.A., Tokunaga, S., Park, S.W., 1996, "Removal of hazardous anions from aqueous solutions by La(III)- and Y(III)-impregnated alumina," *Separation Science* and Technology, Vol. 31, pp. 1501–1514.
- Wasay, S.A., Haron, M.D.J., Tokunaga, S., 1996, "Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel," *Water Environment Research*, Vol. 68, pp. 295–300.
- Wong, Y.C., Szeto, Y.S., Cheung, W.H., Mckay G, 2003, "Equilibrium studies for acid dye adsorption onto chitosan," *Langmuir*, Vol. 19, pp. 7888–7894.
- Warmadewanthi, Liu, J.C., 2009, "Recovery of phosphate and ammonia as struvite from semiconductor wastewater," *Separation and Purification Technology*, Vol. 64, pp. 368–373.
- Xu, J., Ao, Y., Fu, D., Yuan, C., 2008, "Low-temperature Preparation of Anatase Titania-coated Magnetite," *Journal of Physics and Chemistry of Solids*, Vol. 69, pp. 1980–1984.
- Xue, Y., Hou, H., Zhu, S., 2009, "Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag," *Journal of Hazardous Materials*, Vol. 162, pp. 973–980.
- Yang, Y., Zhao, Y.Q., Babatunde, A.O., 2006, "Wang L., Ren Y.X., Han Y., characteristics and mechanisms of phosphate adsorption on dewatered alum sludge," *Separation and Purification Technology*, Vol. 51, pp. 193–200.