基於FPGA的單晶片雙8051雙機熱備系統設計與實現 Design and Realization of FPGA Based Single-Chip Dual-Core Embedded Dual **Module Hot Spare Syste**

李翔 Xiang Li, 戴勝華 Sheng-Hua Dai, 邊興田 Xing-Tian Bian 北京交通大學自控系 ariesmuu@tom.com, dsh@bjtu.edu.cn, 07120292@bjtu.edu.cn

摘要

本文提出了一種單晶片多微控制器(Micro Controller Unit, MCU)系統的設計方法,並給出了基 於現場可編程門陣列 (Field Programmable Gate Array, FPGA) 的單晶片雙軟核雙機熱備多通道電壓檢測系統 的設計方案,並詳細介紹通過Actel Fusion StartKit數模 混合FPGA的實現方法。

關鍵字:單晶片雙軟核、FPGA、Core8051軟核、雙機 熱備。

Abstract

This paper mentions a method of designing singlechip multi-core system, gives a scheme of FPGA (Field Programmable Gate Array) based single-chip dual-core DMHS (dual module hot spare) system which detects multi-channel voltage, and explicates the realization with Actel Fusion StarKit FPGA.

Keywords: Single-chip Dual-core, FPGA, Core8051,

1引言

電腦技術的發展已經進入後PC時代,無論是在民 用電子消費品領域還是軍工業領域,嵌入式系統都有 極其廣闊的應用和發展空間。在某些特定領域(例如 航空航天、軌道交通、地質勘探、軍事應用等),實 際應用對嵌入式系統的安全性和可靠性提出了很高的 要求,雙機熱備系統是一種成熟的解決方案。

雙機熱備系統由兩個硬體結構完全相同的子單元 組成,分別為工作單元和備用單元。雙單元同步獨立 工作,而系統的輸出只選取工作單元的輸出。當單機 發生故障時,進入維修狀態,系統輸出切換至當前工 作單元的輸出。雙機熱備系統的優點是單機故障或維 修時,不影響整個系統的使用,在保證系統安全的前 提下,使系統的可用性得到極大的提升。而熱備功能 的實現可以有效地使整個系統正常工作的持續能力即 可靠性得到明顯的改善。

以往的雙機熱備系統在硬體設計上通常採用兩塊 MCU晶片架構的模式,對於嵌入式系統而言,雙晶片

模型功耗比單晶片大,周邊器件和設備擴展繁多、電 路佈局複雜,這都會對系統的可靠性和安全性造成不 良影響,並且增加了額外的系統開銷和能耗。本文介 紹一種在單晶片嵌入兩個獨立的MCU軟核實現雙機熱 備系統的方法,以及通過Actel Fusion StartKit數模混合 FPGA實現的方法,並完成多通道類比電壓的採集。

2 雙機熱備系統工作模式

雙機熱備系統中兩個子單元具有完全相同的硬體 結構,兩個單元開機後同步獨立工作,系統選取工作 單元的輸出為系統輸出。當備用單元發生故障時,系 統輸出仍為工作單元的輸出,而備用單元進入維修狀 態;維修結束後,備用單元通過日誌更新機制和工作 單元實現同步,並繼續作為系統的備用單元;當工作 單元發生故障時,系統輸出切換至備用單元的輸出, 備機轉為主機,主機進行維修,維修結束後通過日誌 更新和備機同步,然後作為備機使用;如果發生工作 單元和備用單元同時無法工作的狀況(故障、維修或 待修),則系統故障,無法繼續進行工作。除了系統 輸出的自動切換,系統也可以進行手動切換。由於兩 個單元的硬體結構完全相同並且運行相同的程式,所 以手動切換不影響系統的工作。雙機熱備系統工作示 意如圖一所示:

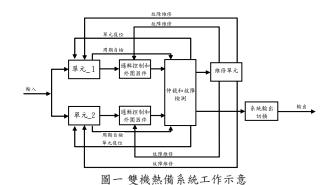
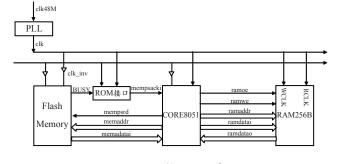


Figure 1. Operation of DMHS System

導致系統或單元故障的因素有很多,例如:單元 的輸出故障、工作單元和備用單元不同步、周邊器件 和設備故障等等。為了針對不同的故障進行維修,必 須分門別類地檢測出各種故障。面向不同的應用場合 需求,對於故障檢測和維修的要求也不盡相同。


3系統硬體總體實現

在FPGA中嵌入軟核時首先要考慮的制約條件是FPGA的門電路數量,只有擁有足夠多門電路,才能容納下多個MCU軟核和其他外設的IP核。特別是對於MCU軟核,使用的門陣列數量較多,要考慮好FPGA晶片的選型。其次,考量其他硬體資源如:時鐘、鎖相環(Phase Locked Loop, PLL)、隨機存取記憶體(Random-Access Memory, RAM)、唯讀記憶體(Read-Only Memory, ROM)等,無論是FPGA內部提供,還是周邊器件提供,都必須能支援設計的需要。

綜合上面的標準,本文設計選擇Actel的Fusion StartKit數模混合FPGA實現雙機熱備系統。Actel的Fusion StartKit數模混合FPGA擁有600萬門門陣列,片內集成了Flash Memory、RAM、先入先出數據存儲器(First In First Out, FIFO)和類比模組;片外提供48MHz的晶振,可以通過2個PLL模組分頻出6個0.75MHz~350MHz;支持Core8051軟核的嵌入,通過Core8051網表檔和時鐘、資料記憶體、程式記憶體的載入,實現完整的8051單片機。該FPGA上集成有類比模組,包括ADC和類比Quad兩部分,可進行32通道8、10、12位元精度的電壓採集,本文示例性地進行兩路8位元精度的電壓採集後輸出,通過板載的LCD1602顯示採樣結果。本文的重點內容在於介紹在單晶片中嵌入雙Core8051軟核,並遵循雙機熱備模式工作,完成系統切換、故障檢測和日誌更新。

3.1 雙Core8051的嵌入

雙機熱備系統要求系統的兩個單元硬體結構完全相同,本文中在單晶片FPGA中嵌入兩個獨立的8051單片機。Core8051內核使用Core8051網表檔完成8051的介面和內部結構聲明;片外的48MHz晶振經PLL模組分頻出兩個10MHz作為兩個8051的系統時鐘;從片內RAM中分別劃分出兩組256B空間作為兩個8051的內部資料記憶體,片內Flash Memory提供兩個64KB的空間作為8051的程式記憶體。建立好的每個8051單元組成如圖二所示:

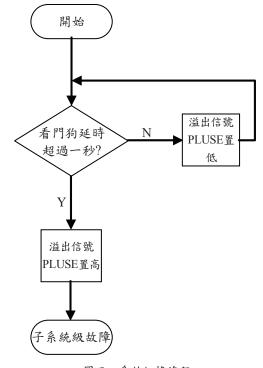
圖二 完整的8051單元組成 Figure 2. Constitution of A Complete 8051 Unit

RAM塊的讀寫時序符合core8051讀寫時序,所以不需要介面,直接將RAM掛到總線上即可。但是由於

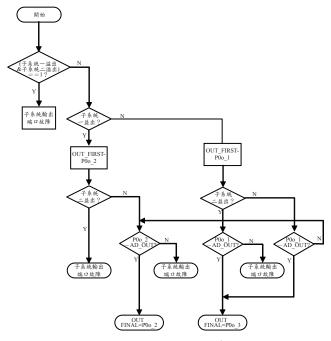
Flash Memory在正常模式下,只要在塊與塊之間跳轉時就會出現四個時鐘(Clock, CLK)週期的Busy信號,並且在8051發出讀命令讀0000H這個位址資料時,Busy信號也會有效,但這時並不是四個CLK週期,只有一個時鐘週期,這將導致core8051讀不到0000H這個單元的資料,因此在core8051和Flash Memory間添加一個轉化控制時序的介面,使之能正常通信。單片機的程式燒寫至Flash Memory中。

3.2 雙機熱備的實現

系統切換是雙機熱備系統首要的功能要求,當工 作單元出現故障時,要求進行系統切換,這裏示範性 地給出兩種故障檢測方式。


首先為兩個8051分別設置兩個看門狗計時器,要求兩個8051向各自的看門狗發送週期自檢信號。若看門狗在溢出前收到該信號則單元正常工作,否則溢出,該單元判為故障,若備用單元正常,系統輸出切換至備用單元輸出。

其次將ADC轉換結果和系統輸出結果進行比較, 若相同,系統正常,否則判為故障,若備用單元正 常,系統輸出切換至備用單元輸出。


系統切換通過下述語句實現 assign OUT_FIRST=(PLUSE_1 && PLUSE_2)? 8'bz:((PLUSE 1)?P0o 2:P0o 1)

assign OUT_FINAL=(AD_OUT[11:4]==OUT_FIRST)? OUT_FIRST:(((PLUSE 1 && PLUSE 2)==0)?P0o_2:8'bz)

PLUSE為兩個看門狗的溢出信號,P00為兩個8051的P0輸出口,OUT_FIRST是比較前的輸出,OUT_FINAL是比較後的系統輸出,它們的判斷如圖三所示:

圖三 系統切換流程 Figure 3. System Switch Flows

系統切換流程(續)

Figure 3. System Switch Flows (Continued)

3.3 日誌更新

故障的單元復位後,為了使自己與工作單元同 步,需要進行日誌更新。日誌更新的資料通信是通過 兩個Core8051間的串口通信實現的,所以將兩個8051 的串口發送端與輸出端對接起來。在8051的程式裏, 有兩個外部中斷服務程式,INTO是串口的發送服務, INT1是串口的接收服務。

8051的外部中斷0和對應側8051的復位信號相連, P1.7和對應側8051的外部中斷INT1相連,即單元修復 後,通過串口通信進行日誌更新。將外部中斷INTO設 置為邊沿觸發,當備機復位後,會有一個下降沿送到 主機的INTO口,於是主機開始執行外部中斷INTO服 務程式。在INTO服務程式的開始,首先通過P1.7向備 機發送一個下降沿信號,然後通過串口進行資料的發 送。而此時備機的INT1口接到觸發信號,開始執行外 部中斷INT1服務程式。外部中斷INT1的內容即接收串 口資料,同時將資料通過PO輸出。雙機間的連線示意 如圖四所示。

Figure 4. Connections Between Two Systems

4 結語

嵌入式系統在應用領域發展迅速,隨著FPGA技 術的進步,單晶片內的邏輯門電路數量更多,軟核的 編寫更加成熟,這使得在單晶片中嵌入多個MCU成為 可能。單晶片的優勢在於功耗更小,電路設計更加便 捷,系統可靠性和安全性更高,這就展現了單晶片多 核系統廣闊的發展和應用空間。本文提出一種在FPGA 中嵌入雙Core8051軟核實現雙機熱備系統並進行即時多 通道電壓採集的方法,並通過選定開發板實現。在單 晶片中嵌入多軟核,能夠大大擴展嵌入式系統應用的 廣度和深度。

本文的特色在於:恰當利用單晶片有限的資源, 嵌入兩個成熟的Core8051軟核,遵循雙機熱備系統的工 作原理,合理實現系統切換、故障檢測、日誌更新, 雙機通信和系統切換經綜合後燒入運行順暢無阻,對 在單晶片中嵌入多MCU軟核並協調其工作做出了一次 新的嘗試。無論是對稱式還是非對稱式多核系統,單 晶片無疑是一種全新的解決方案。

參考文獻

- [1] 周立功等, Actel FPGA實驗教程——基於Fusion StartKit開發板[M],廣州致遠電子有限公司, 2007 •
- 周立功等,Actel FPGA原理與應用——基於Fusion [2] StartKit 系列[M] ,廣州致遠電子有限公司,2007。
- [3] 夏宇聞, Verilog數位系統設計教程[M], 北京航空 航天大學出版社,2003。
- [4] 戴勝華等,單片機原理與應用[M],北京交通大 學出版社,2005。

作者簡介

李翔 (Xiang Li) 北京交通大學自控系 在讀碩士。主要研究領域為嵌入式系統 軟體和硬體、監測系統等。

戴勝華 (Sheng-hua Dai) 北京交通大學 自控系副教授。主要研究方向為嵌入式 系統、微機監測、鐵路信號等。

440 國立宜蘭大學電機資訊學院學報 創刊號 Journal of Internet Technology Volume 9 (2008) NO.5

邊興田(Xing-tian Bian)北京交通大學 自控系在讀碩士。主要研究領域為嵌入 式系統軟體和硬體、監測系統等。