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摘  要 

本文首先利用蘇吉諾的模糊模型對一非線性系統中的輸入與輸出資料進行辨識，其根據 Stone-

Weierstrass 定理證實，透過模糊推論的過程，模糊系統可精確地逼近任何連續函數。進而提出一套系統之

辨識流程，包括以 Fuzzy C Mean 進行空間分割、以最小平方法作為初始參數之粗調、採用最陡梯度法進行

參數微調、最後以一個性能指標函式作為模型評估之標準。最終目標在滿足模型最簡化以及精度上的兩大

需求。接著，如何針對一個模糊模型的受控區間來設計一個模糊控制器是本文的第二個研究目的。藉由李

雅普諾夫穩定條件與線性矩陣不等式所推導的穩定條件是目前研究的熱門課題，但如何有系統的尋找共同

P 解，以保證系統在李雅普諾夫下為漸近穩定仍是模糊控制器設計上之瓶頸。本研究將控制器之設計分為

兩大步驟，首先將模糊模型中的每一條規則視為一個區域線性狀態方程式，針對每一個線性狀態模型設計

相對應的狀態回授控制器。其次是建立一個全域穩定之條件，來取代共同 P 之求解，並保證所設計之模糊

系統為全域穩定之系統。 

關鍵詞 : 模糊建模、李雅普諾夫穩定條件、結構辨識、參數辨識、最陡梯度法，線性矩陣不等式 
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Abstract 

In this paper, we first develop a procedure for constructing Takagi-Sugeno fuzzy systems from input-output 

pairs to identify nonlinear dynamic systems. The fuzzy system can approximate any nonlinear continuous function 

to any arbitrary accuracy that is substantiated by the Stone Weierstrass theorem. A learning-based algorithm is 

proposed in this paper for the identification of T-S models. Our modeling algorithm contains four blocks: fuzzy C-

Mean partition block, LS coarse tuning, fine turning by gradient descent, and emulation block. The ultimate target 

is to design a fuzzy modeling to meet the requirements of both simplicity and accuracy for the input-output 

behavior. In the second part, we propose a discrete time fuzzy system that is composed of a dynamic fuzzy model 

and a fuzzy state feedback controller. This requires that for all the local linear models, a common positive-definite 

matrix P can be found to satisfy the Lyapunov stability criterion, although this is an extremely difficult problem 

for all systems. Thus in this paper, Fuzzy controller design is divided into two procedures. In the first step, we 

express the fuzzy model by a family of local state space models, and the controller is designed by state feedback 

control law for each local linear state space model. In the second step, we establish a global stability condition to 

guarantee the stability of the global closed loop system in order to circumvent the problem of determining the 

common P. 

Key Words : Fuzzy Modeling, Lyapunov Stability Criterion, Structure Recognition, Parameter Identification, 

Maximum Gradient Descent, Linear Matrix Inequality 
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I. Introduction 
The essential function of fuzzy systems  is to formulate expert knowledge and experience in order to make a strategic 

decisions . Expert knowledge may be classified into two categories: conscious knowledge and subconscious knowledge. 

Conscious knowledge can be explicitly expressed in words, but subconscious knowledge is difficult to express precisely in 

words. When the expert is providing knowledge, we can view him as a black box and measure the input-output data pairs. 

A fuzzy controller with expert knowledge or experience is sufficient to provide solutions to highly nonlinear, 

complicated, and unknown systems . This paper presents  a systematic design method to identify a system model using a set of 

input-output data, thereby allowing the fuzzy model to satisfy the requirement of accuracy and minimum rules under the 

cluster analysis. In addition, this paper proposes a design for the fuzzy controller based on fuzzy models , thus creating the 

guidelines  for the global stability of a fuzzy system under the Lyapunov stability criterion. According to the 

Stone-Weierstrass theorem, a fuzzy system is capable of approximating any continuous function [1] and can be used as the 

basis for fuzzy modeling theory. For the fuzzy identification, the modeling architecture presented by Takagi and Sugeno in 

1985 [2] is becoming increasingly important and has been successfully applied to nonlinear modeling [3]. The output of a 

T-S model is a linear combination of input variables , and this model can be represented as  state equations , which are  more 

suitable  for analysis of stability and robustness. 

Fuzzy modeling can be divided into structure recognition and parameter identification. In structure recognition, the 

pattern recognition technique can be used to partition the state space of input variables. Then, the similarity and cluster 

methods from fuzzy theory can be used to effectively obtain the minimum number of rules and the distribution of 

membership functions, which are thus beneficial to the structure recognition [4]. Significant achievements  have already been 

made with respect to the cluster analysis. Fuzzy C-Mean algorithm is the most commonly used cluster law [5]. Furthermore, 

R. Hathaway et al. presented Fuzzy C-Regression (FCRM) to deal with problems related to high dimension classification. 

Wong et al. substituted the gray correlation between data for the  difference in data as the measurement standard for 

classific ation [6]. Wu et al. considered problems related to classification under the structure of linear regression. For 

parameter identification, they pick the optimal initial parameters by a genetic algorithm; and then adjust the parameters in the 

model by the maximum gradient descent [7]. Sungkwun et al. tuned parameters in the model by the least squares method and 

presented an evaluation function to modify the rules of tuning [8]. The current paper proposes  a systematic  fuzzy modeling 

procedure  in the following steps: partition blocks of measurement data based on cluster analysis; then coarse tuning by the 

least squares  method; then fine tuning by the maximum gradient descent; and finally assess the accuracy of the model by the 

evaluation function. If the accuracy is not sufficient, the number of rules are increased, which enables  re-partitioning of 

space. 

A fuzzy controller is a rule-based nonlinear controller, and in this paper a T-S model obtained from fuzzy modeling 

is the controlled plant. In contrast, E. Levin et al. presented an intuitional d esign method known as anti-T-S model controller, 

which intends to create an anti-model as the controller [9]. Another straightforward design method is the so-called T-S rules 

reflective controller, which is designed based on the 1 to 1 mapping of rules for the model being identified [10]. However, 

this method is not suitable if there are too many rules for the fuzzy model. To analyze the dynamic characteristics, Takagi 

and Sugeno presented stability criteria  for both the controlled region of the T-S model and the closed-loop system under the 

T-S controller [11]. In this method, the fuzzy system is globally stable if each rule of this system is considered a sub-system 

for the purpose of finding a positive defin ition, a symmetric matrix P, such that all sub-systems must meet Lyapunov stability 

criterion. The discrete Lyapunov stability criteria were derived from the Linear Matrix Inequity (LMI) to find solutions [12]. 

However, once the number of rules increases, finding solutions for P becomes a difficult task. 

After Takagi and Sugeno presented the stability criterion in 1996, searching for a common P solution to guarantee to 

the system stability became a popular topic. For example, Ma et al. considered the design of fuzzy controller and fuzzy 

observer simultaneously under the fuzzy model; and demonstrated that both can be designed independently in compliance 

with the Principle of Separation [13]. Joh proposed a recursive method to find the solution of P systematically in order to 

obtain the boundaries satisfying the stability criterion of all syb-systems, thereby facilitating the discussion of the robustness 

of system under the change of parameters  [14]. In another study, Ying [15] transformed the consequence-parts of the rules of 

T-S model into a common basis ; So  as soon as a P satisfying a certain rule is found, all sub-systems will be satisfied. In 

Narendra et al. [16], the fuzzy system was  converted into a LTV system, and the stability crit erion for switching systems was 

presented. In a later study, Caoy et al. [17] presented another global stability guideline to replace the repeated solving of 

common P. Zak [18] designed one model rule only and considered other rules as uncertainty of the system, showing that the 
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system is globally stable if the uncertain ty satisfies  a so-called compatib ility criterion. Feng [19] attached a robust term to the 

fuzzy controller to compensate for influence on the system imposed by the uncertainty. 

The current study infers the criterion of global stability for a fuzzy system from the discrete model based on the fuzzy 

identification, and tightly combines  the fuzzy modeling and fuzzy contro ller design, thus demonstrating the feasibility of the 

system architecture , as demonstrated through simulation. 

II. Fuzzy Modeling 

1. Takagi-Sugeno fuzzy model 

The T-S model can be expressed as follows: 

  1

0 1

( ) ..... ( 1) ,

( 1) ( ) ... ( 1),

i i
n

i i i i
n

If x k isA and andx k n isA Then

x k a a x k a x k n

− +

+ = + + + − +
                          (1) 

where 1,...,i m= represents  the number of fuzzy rules, 1,...,j n= represents the number of input variables, and 
i
jA represents the membership function of the ith rule and jth input variable. One characteristic of this model is that the 

consequence can be expressed as the linear combination of the input variables of the premise. In addition, in this the 

consequence is expressed as the linear combination of input variables  of the premise. 

2. Fuzzy Modeling    

To obtain the T-S model corresponding to various types of input-output data, the process of fuzzy modeling can be 

divided into structural recognition and parameter identification. The purpose of structural recognition is to determine the 

number of input variables, thereby partitioning input space; determining the number of rules; building up the initial 

distribution of membership functions of input variables and the consequential parameters; and determining the architecture 

for the approximate models. Parameter identification is used to eliminate the difference between models and physical systems, 

thereby obtaining a complete and accurate model via a fine tuning algorithm of parameter. This paper partitions the modeling 

process into 4 blocks , as shown in Fig. 1. 

A. Partition Block:  

The blocks of input data and output data are partitioned first. This study adopts  the fuzzy C-Mean cluster method 

incorporating the concept of optimization to partition blocks. Let { }1 2, ,....., nX x x x=  be the data to be identified, 

{ }2,3,....., 1c n∈ − ,1 ,1k n i c≤ ≤ ≤ ≤  be  the number of clusters , Matrix [ ]ikU u=  be the level of membership of kth 

data to ith cluster and 1 2( , ,....., )cV v v v=  be the central vector of each cluster.  

According to the following operation: 
(a) objective:  to find [ ]ik fU u M= ∈  and 1 2( , ,....., )cV v v v=  such that  

(b) minimize: 
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For the requirement of minimum number of rules in structural recognition, an optimal balance between the minimum 

number of rules and approximate errors must be found. In the beginning, all data is divided into 2 categories (c=0) in order to 

construct the simplest model, and whether the system requirement can be satisfied is determined by the final model 



宜蘭技術學報 第九期電機資訊專輯 

193 

evaluation. If it fails, the number of partitioned blocks must be increased, which means increas ing the number of rules for the 

fuzzy model. 

3. Tuning parameters by the least squares method: 

The model parameters are tuned by the least squares  method in order to determine the initial parameters of the premise, 

as well the consequence of the fuzzy rules. 

A. Parameters of membership function for premise: 

 As shown by Gauss distribution, parameters andi i
j jm σ  need to be determined.  
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where 1, ,i c= L  denotes  the number of cluster (rules ), and i
k iku u= . 

B. Setting up regression parameters for consequence 

The output of the fuzzy model is  the linear combination of input variables. The following recursive formulation of least 

square method determines the parameters for each rule i:  

0 1[ ]i i i i T
nP a a a= L  
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 1 1[1 ] 1,2, ,T
k k k kS K X S k n+ += − = L  (6) 

4. Tuning parameters by the maximum gradient descent 

In the maximum gradient descent, the difference between the fuzzy model and the object of identification is  considered 

a perfo rmance index, pushing parameters upward for least errors, and thereby systematically adjusting the model parameters 

by recursive equation. Fundamentally , the learning effect of parameters  or convergence speed is dependent on 3 factors – 
accuracy of structural recognition, quality of learning laws , and the parameter aη of learning speed. The parameters to be 

tuned in this paper include the parameters ( ,i i
j jm σ ) of membership function in the rules of the premise, as well as the 

combinative parameters ( i
ja ) of consequence. Initially , the error function is defined as 21

[ ( ) ( )]
2 p mE y k y k= − , with ( )py k  

as the output sequence of the real system, and ( )my k as the output sequence of fuzzy model. 
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Further, the chain rule is used to derive  
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and the maximum gradient descent is used to find the learning laws as  
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III. Fuzzy State Feedback Controller 

For convenience, the model in (1) is rewritten as follows: 
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The state feedback fuzzy controller u is  designed as follows: 

 1( ) ..... ( 1)
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− +
= −

 (17) 

After the process of fuzzy inference, the closed-loop system is  integrated as 
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( 1) ( ) ( )( ) ( )
m m
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i j

x k x x A B K x kλ λ
= =

+ = −∑∑  (18) 

[Theorem 1]  If the fuzzy system is asymptotically stable at the equilibrium point, there must exist a common positive 

symmetric matrix P to satisfy: 

 ( ) ( ) , 1,2, ,T
i i j i i j i jA B K P A B K P Q i j r+ + − = − = L  (19) 

where ijQ  is a positive definite matrix. Each rule of the fuzzy system is considered a sub-system. The controller must 

satisfy not only the local stability of all sub-systems, but also the global stability of the overall system. Therefore, how to find 

a common P matrix to satisfy all rules and the fuzzy state matrix between all rules is  the bottleneck for the design of fuzzy 
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controller. 

IV. Stability Analysis for the Fuzzy System 

In this paper, we attempt to establish the criterion of global stability for fuzzy system from a different viewpoint. In 
equation (17), assuming that rth rule has the highest weighting and arg max[ ( )], 1,2jr x j mµ= = L , then the output of 

controller can be denoted as :  
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where ir i i rA A B K= −  , rr r r rA A B K= − , and 
1

( )
m

ir i ir rr
i
i r

A A Aµ
=
≠

∆ = −∑ .   

According to Theorem 1, there must be a positive symmetric matrix rP for rK to satisfy  

 2 0T
rr r rr rA P A P I− + =  (21) 

Further, d efine a Lyapunov equation [ ( )] ( ) ( )T
r rV x k x k P x k= , so that [ ( 1)] [ ( )] 0r r rV V x k V x k∆ = + − <  is  the criterion 

for asymptotical stability. We obtain 
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[Theorem 2]  If a closed-loop discrete fuzzy system satisfies max max
1, 1, 1,

( ) ( ) 1
m m m

i ri i j rij
i i r i i r j j r

Q Rµλ µ µ λ
= ≠ = ≠ = ≠

+ <∑ ∑ ∑ ，then this 

fuzzy system has global asymptotical stability where max ( )riQλ and max ( )rijRλ are the maximum eigenvalues of matrices  

riQ and rijR , respectively . 

V. Simulation Results 

[Example 1] The approximate model presented by Wang and Mendel [1992] is  applied to a real case of auto-parking: 



宜蘭技術學報 第九期電機資訊專輯 

196 

1

( 1) ( ) cos[ ( ) ( ) ] sin[ ( )]sin[ ( )]

( 1) ( ) sin[ ( ) ( )] sin[ ( )]cos[ ( )]

2sin( ( ))
( 1) ( ) sin [ ]

x t x t t t t t
y t y t t t t t

t
t t

b

φ θ θ φ

φ θ θ φ

θ
φ φ −

+ = + + +
+ = + + −

+ = −

 

where [0,20], [ 90 ,270 ], [ 40 ,40 ]o o o ox φ θ∈ ∈ − ∈ − , and b denotes car length.  
     In this  figure , φ denotes the angle between the car’s movement and the x axis, and θ  denotes the angle between 

the wheels and the y axis. The angle created by the rotation of steering wheel is limited as [ 40 , 4 0 ]o oθ∈ − . We desired to 

identify the tra jectory  x(t) through a fuzzy model. The procedures are as follows: 

Step1: Select ( ), (),and ( )x t t tφ θ as possible input variables. 

Step2: Normalize all variables. 
( ) ( ) ( )

( ) , ( ) , ( )
420 2

9

x t t tx t t tφ θ
φ θ

π π
= = =  

Step3: Partition data by Fuzzy C-Mean and set 800 points as the size of data. 
inputs: ( ) (2 /9) ( /180), ( ),and ( )t k x t tθ π π φ= − + ⋅   

Output: x(t+1) 

Step4: Let the number of clusters be 5.  

Step5: Simulation results are as follows: 

In this  figure , assume  that angleθ starts from 40o− and increases 0.1o each increment time until 40o , so the steering wheel 

starts from 40o− and moves around a circle. As the steering wheel is turned to face front gradually, the radius increases 

gradually until θ = 0o . As soon as the steering wheel faces forward, the car moves straightforward. Then the car starts 

circling as the steering wheel turns to the other side. The fuzzy model derived from cluster analysis makes a perfect 

approximating effect possible. 

[Example 2] an object of control under T -S model is denoted by two  rules as follows: 

T-S Model Plant : 
1

1

1

: ( ) ,

( 1) 2.18 ( ) 0.59 ( 1) 0.603 ( )

R If x k is G Then

x k x k x k u k+ = − − −
 

2
2

2

: ( ) ,

( 1) 2.26 ( ) 0.36 ( 1) 1.12 ( )

R If x k is G Then

x k x k x k u k+ = − − −
 

T-S Model Controller : 
1 1 1

1 1 2( ) , ( 1) ( ) ( 1)If x k isG Then u k k x k k x k+ = + −  
2 2 2

2 1 2( ) , ( 1) ( ) ( 1)If x k isG Then u k k x k k x k+ = + −  

There, 4 parameters 1 1 2 2
1 2 1 2, , ,andc c c c were designed to stabilize the fuzzy closed-loop system. 

Step1: Set up the membership function: 

                                           
                              G1  G2 

 
                                      

                                   0.3  0.4  0.6  0.7 

Step2 : Design the state feedback controller and urge all rules to satisfy the criterion of asymptotical stability; then select  

 1 1 1
1 2[ ] [3.7813 0.1593]K k k= = −  

2 2 2
1 2[ ] [2.0833 0.0611]K k k= =  

Step3 : Find the positive and symmetric solutions for 1 2andP P  in order to satisfy the Lyapunov equation under each rule 

2 0, 1,2T
rr r rr rA P A P I r− + = =  
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If the positive solutions of 1 2,P P cannot be found, then redesign 1 2,K K again in order to find a set of P as follows: 

1

5.3148 0.176

0.176 3.2967
P

 
=  

 
 

max 12 max 21

max 122 max 211

( ) 0.404, ( ) 1.221

( ) 0.266, ( ) 0.308

Q Q
R R

λ λ

λ λ

= =
= =

 

 Step4 : Verify the global stability of the fuzzy system. 

max max
1, 1, 1,

( ) ( )
m m m

i ri i j rij
i i r i i r j j r

Q Rµλ µ µ λ
= ≠ = ≠ = ≠

+∑ ∑ ∑  

1 2

2 max 12 2 2 max 122

(1) :

( ) ( )

0.5*0.404 0.5*0.5*0.266 1

Q R
µ µ

µλ µ µ λ

>
+

= + <

 

2 1

1 max 21 1 1 max 211

(2) :

( ) ( )

0.5*1.221 0.5*0.5*0.308 1

Q R
µ µ

µλ µµλ

>
+

= + <

 

Step5 : Obtain simulation results (initial value x(k)=0.5, x(k-1)=0.5) 

This figure  demonstrates that this system is a stable fuzzy system. 

VI. Conclusions 

The fuzzy control architecture  proposed in this paper is based on fuzzy modeling and has successfully incorporated the 

advantages of fuzzy dynamic model and fuzzy state feedback controller, and thus is beneficial to the tracking control of the 

reference model. The contributions made by this paper include: (1) Appro ximating an unknown system by constructing 

Takagi-Sugeno fuzzy systems model from input-output pairs , thereby building up the basic of theoretical analysis for fuzzy 

modeling; (2) Identifying the T-S model parameters by a learning-based algorithm contains four blocks: fuzzy C-Mean 

partition block, LS coarse tuning, fine turning by gradient descent , and emulation block.; (3) Meeting the requirements of 

both simplicity and accuracy for the input-output behavior by the proposed fuzzy design approach; (4) Implementing a 

discrete time full fuzzy system that is composed of a dynamic fuzzy model and a fuzzy state feedback controller, and finding 

a common positive-definite matrix P to satisfy the Lyapunov stability criterion; and (5) Avoid ing the problem of determining 

the common P by establishing a global stability condition to guarantee the global stability of the closed loop system. Finally, 

s imulation results for the trajectory tracking control of a mobile robot system show the effectiveness of the proposed control 

scheme of the TSK fuzzy controllers. In the future, researchs may incorporate the powerful learning ability of the neural 

network to adapt the parameters of various fuzzy basis functions, thereby eliminating the approximation errors. 
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Fig 1  Block Diagram of Fuzzy Modeling. 
 
 

 
Fig 2  Mobile Robot Configuration. 

 
 

 
Fig 3  Fuzzy modeling of car’s trajectory on x axis with ’-‘ denoting system output and ’--‘ denoting 

model output. 
 
 

 
Fig 4  System response. 
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