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Abstract

In this paper, we first develop a procedure for constructing Takagi-Sugeno fuzzy systems from input-output
pairs to identify nonlinear dynamic systems. The fuzzy system can approximate any nonlinear continuous function
to any arbitrary accuracy that is substantiated by the Stone Weierstrass theorem. A learning-based algorithm is
proposed in this paper for the identification of T-S models. Our modeling algorithm contains four blocks: fuzzy C-
Mean partition block, LS coarse tuning, fine turning by gradient descent, and emulation block. The ultimate target
is to design a fuzzy modeling to meet the requirements of both simplicity and accuracy for the input-output
behavior. In the second part, we propose a discrete time fuzzy system that is composed of a dynamic fuzzy model
and a fuzzy state feedback controller. This requires that for all the local linear models, a common positive-definite
matrix P can be found to satisfy the Lyapunov stability criterion, although this is an extremely difficult problem
for all systems. Thus in this paper, Fuzzy controller design is divided into two procedures. In the first step, we
express the fuzzy model by a family of local state space models, and the controller is designed by state feedback
control law for each local linear state space model. In the second step, we establish a global stability condition to
guarantee the stability of the global closed loop system in order to circumvent the problem of determining the
common P.

Key Words : Fuzzy Modeling, Lyapunov Stability Criterion, Structure Recognition, Parameter Identification,
Maximum Gradient Descent, Linear Matrix Inequality



|. Introduction

The essential function of fuzzy systens is to formulate expert knowledge and experience in order to make a strategic
decisions. Expert knowledge may be classified into two categories: conscious knowledge and subconscious knowledge.
Conscious knowledge can be explicitly expressed in words, but subconscious knowledge is difficult to express precisely in
words. When the expert isproviding knowledge, wecan view him as ablack box and measure the input-output data pairs.

A fuzzy controller with expert knowledge or experience is sufficient to provide solutions to highly nonlinear,
complicated, and unknown systens. This paper presents a systematic design method to identifya system model usingaset of
input-output data, thereby allowing the fuzzy model to satisfy the requirement of accuracy and minimum rules under the
cluster analysis. In addition, this paper proposes a design for the fuzzy controller based on fuzzy modds, thus creating the
guidelines for the global stability of a fuzzy system under the Lyapunov stability criterion. According to the
Stone-Weierstrass theorem, a fuzzy system is capable of approximating any continuous function [1] and can be used as the
basis for fuzzy modeling theory. For the fuzzy identification, the modeling architecture presented by Takagi and Sugeno in
1985 [2] is becoming increasingly important and has been successfully applied to nonlinear modeling [3]. The output of a
T-S model isalinear combination of input variables, and this model can be represented as state equations, which are more
suitable for analysisof stability and robustness.

Fuzzy modeling can be divided into structure recognition and parameter identification. In structure recognition, the
pattern recognition technique can be used to partition the state space of input variables. Then, te similarity and cluster
methods from fuzzy theory can be used to effectively obtain the minimum number of rules and the distribution of
membership functions, which are thus beneficial to the structurerecognition [4]. Significant achievements have already been
made with respect to the cluster analysis. Fuzzy C-Mean algorithmis the most commonly used cluster law [5]. Furthermore,
R. Hathaway et al. presented Fuzzy C-Regression (FCRM) to deal with problems related to high dimension classification.
Wong et al. substituted the gray correlation between data for the difference in data as the measurement standard for
classfication [6]. Wu et al. considered problems related to classification under the structure of linear regression. For
parameter identification, they pick the optimal initial parameters by a genetic algorithm; and then adjust the parametersin the
model by the maximum gradient descent [7]. Sungkwun et al. tuned parametersin the model by the least squares method and
presented an evaluation function to modify the rules of tuning [8]. The current paper proposes a systematic fuzzy modeling
procedure in the following steps: partition blocks of measurement data based on cluster analysis; then coarse tuning by the
least squares method; then fine tuning by the maximum gradient descent; and finally assess the accuracy of the model by the
evaluation function. If the accuracy is not sufficient, the number of rules are increased, which enables re-partitioning of
space.

A fuzzy controller isarule-based nonlinear controller, and in this paper aT-S model obtained from fuzzy modeling
isthecontrolled plant. In contrast, E. Levinet al. presented an intuitional d esign method known as anti-T-S model controller,
which intendsto create an anti-model as the controller [9]. Another straightforward design method is the so-called T-S rules
reflective controller, which is designed based on the 1 to 1 mapping of rules for the model being identified [10]. However,
this method is not suitable if there are too many rules for the fuzzy model. To analyze the dynamic characteristics, Takagi
and Sugeno presented stability criteria for both the controlled region of the T-S model and the closed-loop system under the
T-S controller [11]. In this method, the fuzzy systemisglobally stableif each ruleof thissystemis considered a sub-system
for the purpose of finding apositive definition,asymmetric matrix P, such that all sub-systems must meet Lyapunov stability
criterion. Thediscrete Lyapunov stability criteria were derived from the Linear Matrix Inequity (LMI) to find solutions [12].
However, once the number of rulesincreases, finding solutionsfor P becomes adifficult task.

After Takagi and Sugeno presented the stability criterion in 1996, searching for a common P solution to guarantee to
the system stability became a popular topic. For example, Ma et al. considered the design of fuzzy controller and fuzzy
observer simultaneously under the fuzzy model; and demonstrated that both can be designed independently in compliance
with the Principle of Separation [13]. Joh proposed a recursive method to find the solution of P systematically in order to
obtain the boundaries satisfying the stability criterion of all syb-systems, thereby facilitating the discussion of therobustness
of system under the change of parameters [14]. In anotherstudy, Ying [15] transformed the consequence-parts of the rules of
T-S model into a common basis; So as soon as a P satisfying a certain rule is found, all sub-systems will be satisfied. In
Narendra et al. [16], the fuzzy system was converted into a LTV system, and the stability crit erion for switching systemswas
presented. In a later study, Caoy et al. [17] presented another global stability guideline to replace the repeated solving of
common P. Zak [18] designed one model rule only and considered other rules as uncertainty of the system, showing that the

191



system isglobally stableif the uncertainty satisfies aso-called compatibility criterion. Feng [19] attached arobustterm to the
fuzzy controller tocompensate forinfluence on the system imposed by theuncertainty.

The current study infers the criterion of global stability for a fuzzy system from the discrete model based on the fuzzy
identification, and tightly combines the fuzzy modeling and fuzzy controller design, thus demonstrating the feasibility of the
system architecture, asdemonstrated through simulation.

Il. Fuzzy Modeling

1. Takagi-Sugeno fuzzy model
The T-S model can beexpressed asfollows:
If x(K)isA and....andx(k- n+1)isA ,Then (1)
x'(k+1) =a, +ax(k )+ .. +a;x(k- n+1),
where i =1,...,mrepresents the number of fuzzy rules, j =1,...,n represents the number of input variables, and
Aij represents the membership function of the i" rule and " input variable. One characteristic of this model is that the
consequence can be expressed as the linear combination of the input variables of the premise. In addition, in this the
consequence is expressed asthe linear combination of input variables of the premise.

2. Fuzzy Modéding

To obtain the T-S model corresponding to various types of input-output data, the process of fuzzy modeling can be
divided into structural recognition and parameter identification. The purpose of structural recognition is to determine the
number of input variables, thereby partitioning input space determining the number of rules; building up the initia
distribution of membership functions of input variables and the consequential parameters; and determining the architecture
for the approximate models. Parameter identification is used toeliminate the difference between models andphysical systems,
thereby obtaining acomplete and accurate model viaafine tuning algorithm of parameter. This paper partitions the modeling
process into 4 blocks, as shownin Fig. 1.

A. Partition Block:

The blocks of input data and output data are partitioned first. This study adopts the fuzzy GMean cluster method
incorporating the concept of optimization to partition blocks. Let X ={X1,X2, ..... ,Xn} be the data to be identified,

cl {2,3, ..... ,n- ZI} JA1EKENLEIE£C be thenumber of clusters, Matrix U =[u,] be the level of membership of Kh
datatoi clusterand V = (V,Vy,....., V) bethecentral vector of each cluster.
According to thefollowing operation:
(a) objective: to find U =[u,]T M, and V =(v,V,,.....,V,) such that
(b) minimize: JU V)=Q & ()" % - Vi ||2,mT (L¥) isaweighted value,

k=1 i=1

(Osubjectto: § =1 " k={1,2L .n},u; 20, 1£i£n, 1£jEc,

i=1

we can locate
u, = 1 —1£i£c, 1EKEn
< X -V m™i
a . )
X =V @
o n m
Ui ) X .
i:—aok:nl( J K1fifc
m
ak_l(uik)

For the requirement of minimum number of rules in structural recognition, an optimal balance between the minimum
number of rules and approximate errorsmust be found. In the beginning, all datais divided into 2 categories (c=0) in order to
construct the simplest model, and whether the system requirement can be satisfied is determined by the final model
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evaluation. If it fails, the number of partitioned blocks must be increased, which meansincreasing the number of rulesfor the
fuzzy model.

3. Tuning parameters by theleast squares method:

The model parametersaretuned by theleast squares method in order to determine the initial parametersof thepremise,
aswell the consequence of the fuzzy rules.

A. Parametersof membership function for premise
Asshown by Gauss distribution, parameters m'j andsij need to be determined.

i <l Poox- ot
A (m;,s)) =expi -(‘—i')zy
TS
g 3
oA WXy _ ®)
m, =42 , S
g j
a Y
k=1

where i =1L ,c denotes the number of cluster (rules), and uik =u,.

B. Setting up regression parametersfor consequence
The output of the fuzzy model is the linear combination of input variables. Thefollowing recursive formulation of least

square method determinesthe parameters for each rule i:
P=[a, a L al
y = ap+aix +abXy + ..+ aX,
y =X"P i=1,2L ,c
X=[1x L x]
P =fa a L af

|:>ki+1 = R<i + Kl<[yk+1 - Xl:rlpki] (4)
S Xk
K = QuaXin =——= (5
T (M) T XS Xin
S, =[1- K X[,1S, k=12L ,n (6)

4. Tuning parameters by the maximum gradient descent

In the maximum gradient descent, thedifference between the fuzzy model and the object of identification is considered
a performance index, pushing parameters upward for least errors, and thereby systematically adjusting the model parameters
by recursive equation. Fundamentally, the learning effect of parameters or convergence speed is dependent on 3 factors —
accuracy of structural recognition, quality of learning laws, and the parameter h, of learning speed. The parameters to be

tuned in this paper include the parameters (rrfj S J' ) of membership function in the rules of the premise, as well as the
combinative parameters (aij ) of consequence. Initidly, the error function is defined as E = %[yp(k) - Y (K7, with y, (K)

asthe output sequence of thereal system, and Y, (k) asthe output sequence of fuzzy model.

o iy TE(K)

3y(k +1) =ay(k) h“ﬂa‘o(k) ™
i TEK)

al (k+1)=al (k) ha—‘ﬂa‘j(k) ®)
o TE(K)

mi (k+1) =m| (k) hmﬂm'j(k) o)
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TE(K)

Sl =ei 00N 35

Further, the chain ruleis usedtoderive

TEK)  EK) Ek EK)
Tap (k)" Ta/(k) " (k)" fs/(k)’

and the maximum gradient descent is usedto find the learning lawsas
ag(k +1) =ag(k) +h,(y,(K) - Y (k)T (K
aj(k+1) =aj (k) +h.(y,(K)- yaK) (k) X(K

m) (k+1) =mi (k) +

h, (Yo (K) = Y (KDY m(K) - YK (K)(X; (K) - M} (K))

(s, (K)?

si(k+D=s!(k)+
h (Yo (K) = YRVl K) - Y KD (K)(X(K)- i (K))?

: s, ()°

I11. Fuzzy State Feedback Controller

For convenience, the model in (1) is rewritten asfollows:
If x(k)isA and....and x(k- n+1)isA Then
X' (k+D)=ax(k)+L +a x(k- n +1) +b'u(k)

= A X(K)+ Bu(k)
éa, a, a,, au
e u
gl 0y

where A =€0 1
é

- - - -

¢ a
0 0 0 1 oOf
The state feedback fuzzy controller u is designed asfollows:

If x(k)isAland....andx(k- n+1)isA,
Then u(k) = - K; x(K)

After the process of fuzzy inference, the closed-loop system is integrated as

xk+1) =4 & 1,001 (X A- BK,)x(K)

=1 j=a

0 0Uand x(k)=[x(k) x(k-DL x(k- n+1)],i=1 L,m.
a

(10)

(11

(12)

(13)

(14)

(15)

(16)

17)

(18)

[Theorem 1] If the fuzzy system is asymptotically stable at the equilibrium point, there must exist a common positive

symmetric matrix P to satisfy:
(A+BK;)'P(A+BK))- P=-Q; i,j=12L ,r

(19)

where Qij is a positive definite matrix. Each rule of the fuzzy system is considered a sub-system. The controller must

satisfy not only thelocal stability of all sub-systems, but also theglobal stability of theoverall system. Therefore, how to find
a common P matrix to satisfy all rules and the fuzzy state matrix between all rules is the bottleneck for the design of fuzzy
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controller.
V. Stability Analysisfor the Fuzzy System

In this paper, we attempt to establish the criterion of global stability for fuzzy system from a different viewpoint. In
equation (17), assuming that " rule has the highest weighting andr =arg max| m(x)], j=1,2L m, then the output of

controller canbedenoted as:
u(k) = - K, x(k)

Xk +1)= & A xK)+ B u(l)]
=& A XK) - BK,Ix(K) @)

= (A, + 8 A, )x(k)

itr

=14, +8 m(A, - A XK =[ A, +DA XK
where A =A - BK, , A =A - BK,, and DA :g mA - A).

According to Theorem 1, there must be a positive symmetric matrix P for K to satisfy
'P.A, - P +21 =0 (21)

Further, d efine a Lyapunov equationV [ x(k)] = x" (k)P X k) , so that DV. =V, [x(k+1)]- V.[x(k)] <O is thecriterion
for asymptotical stability. Weobtain
DV, =V [x(k+D)]- V. [x(k)]
=X (k+2)P x(k +1)- X" (k)P, x(k)
= [(Ar + DA)X(K)I" R.L(A, + DA )x(K)]
- X' (K)P, x(k)
=x"(KI(A, +DA,) R (A, +DA,)- RIxk) (22)
=x"(k)[-2 +DAP,A, +
A RDA, +DA; PDA 1x(K)
=20 (- 1+ & Q,+ 8 RIXK)

i=1jr i=q,1r

D DA'P A +ATPD
Where é rTi-Qri = Ar rArzAr I Ar
i=1jir

m m m
[Theorem?2] If a closed-loopdiscrete fuzzy system satisfies é_ L Q)+ é_ é mml . (R;;) <1 thenthis

i=1jir i=Lir j=1jir
fuzzy systemhasglobal asymptotical stability where 1 . (Q,) andl ., (R;;) are the maximum eigenval uesof matrices

Q, and Ry , respectively .
V. Smulation Results

[Example 1] The approximate model presented by Wang and Mendel [1992] is applied to areal case of auto-parking:
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X(t+1) = x(t) + cog f(t) + gy ] +sin[(t)]sin[f(1)]
y(t+1) = y(t) +sin[f(t) +q(t)] - sin[(t)]cos[f(1)]

2sin( t))]
b

where x1 [0,20], f T [-90°,270°], T [-40°,40°], and b denotes car length.

In this figure, f denotes the angle between the car’ s movement and the x axis, and  denotes the angle between

f(t+2) =f(t)- sin’

the wheels and the y axis. The angle created by the rotation of steering wheel is limited asql [- 40° 4 0]. We desired to
identify thetrajectory x(t) througha fuzzy model. The procedures are asfollows:
Stepl: Select X(t), f (),andq(t) aspossibleinput variables.
Step2: Normalizeall variables.
_ X({) t f t t

Hp

Step3: Partition databy Fuzzy C-Mean and set 800 points as the size of data.
inputs q(t) =-(2p/9) +(k>p /180), x(t),andf(t)

Output: x(t+1)
Step4: L et the number of clusters be 5.
Step5: Simulation results are asfollows:

In this figure, assume that angleq starts from- 40° and increases 0.1° each increment time until 40°, so the steering whee!
starts from- 40° and moves around a circle. As the steering wheel is turned to face front gradually, the radius increases
gradually until =0°. As soon as the steering wheel faces forward, the car moves straightforward. Then the car starts
circling as the steering wheel turns to the other side. The fuzzy model derived from cluster analysis makes a perfect
approximating effect possible.

[Example 2] an object of control under T -S model is denoted bytwo rules as follows:
T-SModel Plant :
R': 1f x(k) is G,,Then
x'(k +1) =2.18x(k) - 0.59x(k - 1)- 0.603u(k)
R :1f x(k) is G,,Then
x?(k +1) = 2.26x(k) - 0.36x(k - 1) - 1.12u(k)
T-SModel Controller :
If x(k)isG,,Then u*(k+1)=k'x(k)+kx(k- 1)
If x(k)isG,,Then W (k+1)=kx(k)+k2x(k- 1)
There, 4 parameters ¢, C;, ¢Z,and ¢ weredesigned to stabilize the fuzzy closed-loop system.
Stepl: Set upthe membership function:

03 04 06 07
Step2 : Design the state feedback controller andurge all rulesto satisfy the criterion of asymptotical stability; then select
K'=[k' k;]=[3.7813 - 0.1593]
K? =[K* k3] =[2.0833 0.0611]
Step3 : Find the positive and symmetric solutionsfor B, and P, in order to satisfy the Lyapunov equation under each rule

P A, - P+20 =0, r=1,2
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If the positive solutions of B, P, cannot be found, then redesign KL K? againin order tofind aset of Pasfollows:

_6.3148  0.176
' E0176 3.2967Y

| (Q,)=0.404, 1 .. (Q,)=1221
I max ( RZZ) =0.266, | max( Rle) =0.308

Step4 : Verify theglobal stability of the fuzzy system.

m
o

m m
A me@)ta a mmlwR,)
i=1jtr i=l irj=,jtr

D) m>m:

M o Q)+l (Ry,)

=0.5*0.404+0.5*0.5*0.266<1
(2) m>m:

M (Qo) + 1 (Ryy)

=0.5*1.221+0.5*0.5*0.308<1
Step5 : Obtain simulation results (initial value x(k)=0.5, x(k-1)=0.5)
This figure demonstrates that this system isastable fuzzy system.

V1. Conclusions

The fuzzy control architecture proposed in this paper is based on fuzzy modeling and has successfully incorporated the
advantages of fuzzy dynamic model and fuzzy state feedback controller, and thus is beneficial to the tracking control of the
reference model. The contributions made by this paper include: (1) Approximating an unknown system by constructing
Takagi-Sugeno fuzzy systems model from input-output pairs, thereby building up the basic of theoretical analysis for fuzzy
modeling; (2) Identifying the T-S model parameters by a learning-based algorithm contains four blocks: fuzzy GMean
partition block, LS coarse tuning, fine turning by gradient descent, and emulation block.; (3) M eeting the requirements of
both simplicity and accuracy for the input-output behavior by the proposed fuzzy design approach; (4) Implementing a
discrete time full fuzzy system that is composed of adynamic fuzzy model and a fuzzy state feedback controller, and finding
acommon positive-definite matrix P to satisfy the Lyapunov stability criterion; and (5) Avoiding theproblem of determining
the common P by establishing aglobal stability condition to guarantee the global stability of the closed loop system. Finally,
simulation results for the trajectory tracking control of a mobile robot system show the effectiveness of the proposed control
scheme of the TSK fuzzy controllers. In the future, researchs may incorporate the powerful learning ability of the neural
network toadapt the parameters of various fuzzy basisfunctions, thereby eliminating the approximation errors.
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Fig 1 Block Diagram of Fuzzy Modeling.
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Fig 2 Mobile Robot Configuration.
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Fig 3 FRuzzy modeling of car’' s trajectory on x axis with ' denoting system output and’ - denoting
model output.

Fig 4 System response.
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