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Abstract

A novel grey-fuzzy regulator using genetic algorithms for a dc motor is presented in this paper.
The grey system theory is employed to design a grey prediction model. After the grey model predicting
the feedback errors of the motor speed, a compensated energy will be generated for the fuzzy controller.
Appending the grey predictor to the feedback control system, then the fuzzy inference engine receives
not only the current data but also the future information. Furthermore, the optimal parameter of the
grey model is acquired via genetic algorithms. Computer simulation results show that the regulation
performance of the motor speed and the control energy isimproved.
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Grey-Fuzzy Regulation of a DC Motor Using Genetic Algorithms

|. Introduction

The industrial level and technological idea have
been changed by the impact of the automation
recently. An important electrical control component is
the dc motor, which is a power actuator device that
delivers energy to aload. Because of features such as
speed controllability, well-behaved characteristics,
and adaptability to various types of control methods,
dc motors are extensively used in numerous
servomechanisms [5]. Thus, it is very important to
study the regulation of dc motors.

L.A. Zadeh first proposed the idea of fuzzy set
[10]. The fuzzy inference system employing fuzzy
if-then rules can control a plant using the human
knowledge. Fuzzy controller has been widely used in
industry for its easy realization. Much work has been
done on the analysis of control rules and membership
function parameters [8]. However, the traditional
control strategies only adopted the previous state
information as the input signal of the decision-making
mechanism. This type of fuzzy control reflects the
current status and is lack of adaptability.

The grey system theory was established in 1982
[2]. The grey predictor of a system can be built by
only a few given data or undetermined information.
Then it can be used to forecast the system outputs
with high accuracy. The first-order one-variable grey
model GM (1,1) isincreasingly applied in many fields
of engineering [6]. For example, a PD controller
combined with a grey prediction model is used to
control an inverted pendulum [4]. In [1], an integral
variable structure controller with grey prediction is
applied to compensate the speed of a synchronous
reluctance motor.

In [11], a fuzzy inference system with a grey
predictor is utilized to regulate the speed response of a
dc motor. Using only 3 past data of speed error, the
grey prediction model is built. Appending the grey
predictor to the feedback loop, the fuzzy controller
receives not only the current data but also the future
information. This type of control reflects both the
current status and the future tendency of the states.
Therefore, the regulation response of the dc motor can
be controlled in advance.

In this paper, a new grey-fuzzy regulation based
on genetic agorithms is proposed. To enhance the
accuracy of prediction, the genetic algorithms are

applied to search the optimal parameter of grey model.
The characteristics of genetic algorithms are the
random information exchange among the population
without constraint condition of the searching space
[12]. Genetic agorithms employ chromosomes
through three operations, reproduction, crossover, and
mutations to generate offspring for next iterations.
The advantages of genetic algorithms include
derivative-free stochastic optimization, parallel-search
procedure and applicable to both continuous and
discrete problems. Thus, the performance of the
grey-fuzzy regulator will be promoted after the
optimal grey model is obtained.

This paper is organized as follows. In section 2,
the mathematical model of a dc motor is derived. In
section 3, the structure of grey-fuzzy control with
genetic algorithms is constructed. In section 4,
simulation results with different initial conditions are
shown. Conclusion remarks are given in section 5.

II. State-Space M odel of DC
Motors

The dc motor converts direct current electrical
energy into rotational mechanical energy. Because of
high efficiency, compact size, good consumption of
heat and so on, dc motors are extensively applied to
many kinds of actuators [7]. The equivalent electric
circuit showsthat U isthe armature voltage (V), R
is the armature resistance (€2 ), L is the armature
inductance (H), &, is the back electromotive-force
voltage (V), @ isthe angular velocity (rad/sec), and
i is the electric current (A) of armature. The physical
relation is expressed as

di )
u=L—+R+ 1
at S (1)
dw
J —=T -T -bw 2
m dt m L m ()
g =K,w 3)

where J., is the rotor inertia (kgf-cm-sec?), T, is
the rotor torque (kgf-cnm/A), b, isthe rotor damping
ratio (g-cm/rpm), T, is the load torque (kgf-cm/A),
and K, is the back electromotive-force constant

(v - s/rad).
Substituting Eq. (3) into Eq. (1) and rearranging
Eq. (2) yields
ﬂ:—Bi—ﬁaﬁiu 4
dt L L L
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(:j—?z—?—:aﬁ K. (5)
where K, isthe torque constant (N-m/A). Let the
electric current of armature and the angular velocity
be the two dstate variables. Then the linearized
state-space model of the dc motor could be obtained:

X = AX + Bu

- - 1
o P '}fu ()
0

m

The parameters of the dc motor arelisted in Table 1.

I11. Grey-Fuzzy Regulation
Using Genetic Algorithms

1. Fuzzy Controller

The fuzzy inference system employing fuzzy
if-then rules can control a plant using the human
knowledge. The design procedure of traditional fuzzy
logic controller includes fuzzifier, fuzzy rule base,
fuzzy inference, and defuzzifier.

In this paper, the linguistic variables are angular
velocity error €, , angular velocity w , control
energy u’, estimated error of angular velocity éW
and compensated energy AuU. The Mamdani fuzzy
inference system uses minimum and maximum for
T-norm and T-conorm operators, respectively. With

max-min composition, the consequence g (Y) is

1o (Y) = max[t, () A pt, () Aty (V)] (D)
where X, X,,and Yy represent thefuzzy sets g,
w, and U, respectively; /UA;(X1)v lLlA‘Z(XZ)’ and
g (y) mean the membership functions of g, w,
and u*, respectively; | isthe index of membership

functions for every fuzzy set; m is the number of

triggered fuzzy rules.
The fuzzy inference up((z) for the fuzzy

controller with grey prediction is

ko (D) = M () Ak @) (8)
where x* and z represent the fuzzy sets &, and
Au, respectively; p.«(x*) and ,uDk(z) mean the
membership functions of &, and 4u; k is the

index of membership functions for every fuzzy set; n
is the number of triggered fuzzy rules.
Defuzzification is used to extract a crisp value

from a fuzzy set. There are a lot of methods for
defuzzifying a fuzzy set. The center of gravity
defuzzification is adopted in this paper [9]

Shg 00y
= 9)
Sig (%)
i=1
iuD,(zj)-zj
== (10)
_Z: uDJ(Zj)
j=1

where Y* and Z* represent the crisp values of
control energy U* and compensated energy Au,
respectively, i and j arethe index of consequent

rules.

2. Grey Predicton Model

A system is caled “grey” when its part of
information is unknown [3]. Grey system theory has
been applied to many fields of engineering. It can be
used to construct a grey model (GM) for uncertain
systems with incomplete information. The GM
describes a system behavior via a first order
differential equation and can be served as a useful
predictor with only few past data. The approach to
build up the predictor of the state error is depicted as
follows.

Assume that the original sequence data of the
state error with 3 samplesis expressed as

KO ={ &), &7 (2,73} (11)
After the first order accumulated generating operation
(AGO) is taken on 8x©, the sequence data &x¥ is
obtained by

&Y ={ &P (1), %P (2), XY ()} (12

where x®(n)= i &), vne{1, 2 3}.
i=1

The generating mean sequence data 79 is
defined as
&P (n) + &P (n-1)

2
vV ne{23}. The grey difference equation is
established as
MOn)+az®(n)=b (14)

V ne{2,3}. Then, the grey model of the state error is
described by thefirst order differential equation

%ay(l) t)+asx¥(t)=b (15)

Z9(n)= (13)

The parameters a and b can be estimated by least
sguare method as
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{ﬂ =(E'E)'E'F (16)

{- Z9(2) 1} {(w (2)}
where E= , F= .
-Z913) 1 X (3)

The solution of Eq. (15) is
b

KP(n+1) = [5)(“’) D —E}ea" +— 17)

a a
Taking inverse accumulated generating operation
(IAGO) on &™ , the predictive state error of the dc

motor is obtained by
KO (n+1)= &K (n+1)- & (n)

=(1-€" [ax“’) @- g}e‘a" (18)

3. Grey-Fuzzy Regulation

Grey prediction model is derived from the grey
system theory. The main purpose of the grey model is
to find the relation from a set of data and infer the
tendency of the future. Therefore, the fuzzy controller
uses the prediction signal of grey model as the input
of inference system in this paper first. The fuzzy
controller combined with a grey predictor is applied to
regulate the angular velocity of a dc motor. Fig. 1
shows the block diagram of control structure.

Based on fuzzy theory, control energy u* is

inferred from fuzzy controller according to the input
variables: angular velocity error e, (t) and angular

velocity w(t) . The estimated error of angular

velocity €, (t+1) is obtained by sending the signal

of angular velocity error e, (t) to the grey predictor.

The compensated control energy Au is inferred

from another fuzzy controller according to the

estimated error of angular velocity &, (t+1) . If the
compensated energy AU is added to the control
energy u*, then the total input energy of the dc
motor will be the output sum of two fuzzy controllers.

Therefore the regulation response of the dc motor can

be controlled in advance and the performance will be

promoted.
The design algorithm of the fuzzy controller with
grey predictionisillustrated as follows.

(8 Built the grey prediction model for the feedback
error of the state variable w(t) . Measure a series
of error signal: ew(t_z), ew(t_l), and qN(t).
Calculate the estimated error €,(t+1), t>3
from eguation (18).

(b) Design the fuzzy inference engine for regulation
of w(t) . The control energy u* (t) isobtained

by equation (9).
(c) After the grey prediction of step (a), the
estimated error €, (t+1) is used as the input

signal  of another fuzzy controller. The
compensated energy is derived by equation (10).
(d) Thetotal control energy u(t) of the dc motor is
u(t)=u*(t) +Au(t+1) (19)
By subgtituting equation (19) into equation (6), the
regulation response of systemis acquired.

4. Genetic Algorithms

In traditional grey model, the sequence data Z¥
(13) is applied to derive the grey prediction model
(18). However, the process of the origina grey
information for whiting is not optimal. To reduce the
error of grey prediction, a new sequence data is
introduced in this paper

Z0(n)= kP (n) + (1- ) &P (n—1) (20)
where € [0]].

It means that the traditional grey model is just a
special case of (20) for ¢ =05. To seek the
optimal value of ¢« , the genetic algorithms (GAs) are
applied. The GAs encodes each unit in a parameter
space into a binary bit string called a chromosome,
and each unit is connected with a “fitness” value. GAs
usually keeps a set of unit as a population, and
congtructs a new population using genetic operators
such as selection, crossover and mutation, in each
generation. After getting a number of generations, the
population contains members with better fitness

values.

The « will be coded by a binary string and
congtitute a chromosome. The population is generated
randomly. After solving the grey prediction equation,
the grey-fuzzy controller is obtained and the fitness of
the population is evaluated. In this paper, the fitness
function is defined as follow:

Pl = MIN _offset — Y]d (21)
where Pl is the fitness value, e is the error of the
regulation and MIN_offset is a constant. After the
fitness function is calculated, the fitness value and the
number of the generation determine whether the
evolution processis stopped or not.

V. Computer Simulation

The Gaussian membership functions of fuzzy sets

are employed in this paper. The number of
membership functions of input e,, w, and &, are

3, 5, and 3, respectively. The number of membership
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functions of output u* and Au ae 5 and 3,
respectively. In fuzzy inference engine, Minimum and
Maximum are adopted for the T-norm and T-conorm
operators, respectively.

The first fuzzy controller is a two-input
single-output Mamdani fuzzy model with 15 rules.
These rules are expressed as

R':IFe, isNandwisNB, THEN u* isPS
R%:IFe, isZOandwisNB, THEN u* isPB

RY“:IFe, iszZOandwisPB, THEN u* isNB
R®:IFe, isPandwisPB, THEN u* isNS
These fuzzy rules are summarized in Table 2, where
NB means negative big, NS means negative small, ZO
means zero, PS means positive small, and PB means
positive big, respectively.

The second fuzzy controller is a single-input
single-output Mamdani fuzzy model with 3 rules.
These rules are expressed as
RU:IF &, isN,THEN 4u isP
R2:IF &, isZO, THEN Au isZO
R3:IF &, isP, THEN 4u isN
These fuzzy rules are summarized in Table 3, where N
means negative, ZO means zero, and P means positive,
respectively.

Simulation results are obtained by Matlab
software. According to two different initial conditions,
the performance of regulation will be compared
among the traditional fuzzy controller, the grey-fuzzy
controller and the GA-based grey-fuzzy controller.

Case 1: Theinitial values of state variables X are
[0 1]". The membership functions of linguistic
variables ¢, , w, and Au ae with the same
universe [-2 2] as shown in Fig. 2 and Fig. 3,
respectively. The membership functions of linguistic
variables u*, and &, are with the same universe
[-1 1]. First, the grey predictor estimates the error of
angular velocity. According to the genetic algorithms
of section 3.4, the optimal grey model is obtained. Fig.
4 shows the evolution process of regulation error
function. Table 4 lists the parameters of the genetic
agorithms. Fig. 5, Fig. 6 and Fig. 7 show the optimal
regulation response of electric current i angular
velocity w, and control energy U, respectively.

On the other hand, based on the traditional fuzzy

controller and the grey-fuzzy controller, the regulation
response of i, @, and u are plotted in terms of

dashed lines and dotted lines, respectively. In this
computer simulation, the grey predictor launches its
function after the fourth data. The average estimated
error € isdefined as

N .
>|&y —ew|
e=4 (22)
N-3
where N is the number of data Table 5

demonstrates that the GA-based grey-fuzzy controller
owns the best performance than the traditiona fuzzy
controller and the grey-fuzzy controller.

Case 2: Theinitia values of state variables X are
[1 2]". The membership functions of linguistic
variables e,, w, u*, and &, are with the same
universe [-10 10]. The membership functions of
linguistic variables Au are with the universe [-12
12]. By the same design procedure of case 1, the
optimal regulation response of electric current i,
angular velocity w, and control energy U are
plotted in terms of solid lines as shown in Fig. 8, Fig.
9 and Fig. 10, respectively.

Using the traditional fuzzy controller and the
grey-fuzzy controller, the regulation response of i,
@, and u are plotted in terms of dashed lines and
dotted lines, respectively. Table 5 aso displays that
the GA-based grey-fuzzy controller owns the best
performance than the traditional fuzzy controller and
the grey-fuzzy controller.

V. Conclusions

In case of system with model uncertainty, fuzzy
logic is suitable for the controller design. In this paper,
a grey-fuzzy controller is developed for the speed
regulation of a dc motor first. The grey predictor is
incorporated into a fuzzy controller. The grey model
is employed to estimate the state error of motor speed
such that the control signal is appropriately adjusted in
advance. Furthermore, the optimal parameter of the
grey model is acquired via genetic algorithms. After
using the GA-based grey-fuzzy controller, either the
maximum overshoot or the control energy is reduced.
Computer simulations have demonstrated the
effectiveness of the design
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Table 1 Parameters of the DC Motor.

R=299 (Q) L=0.42x10° (H)

J,,=152x1072 (kg—-cm?) K,=24.1x10° (V —s/rad)

K,y =5.926x10° (N —m/amp) by, =1.18x10™* (N —cm—sec/rad)

Table 2 Fuzzy Rule Base 1.

W
N Z0 P
NB PS PB PB
W NS Z0 PS PB
Z0 NS Z0 PS
PS NB NS Z0
PB NB NB NS
Table 3 Fuzzy Rule Base 2.
&y
N Z0 P
N N
A Z0 Z0
P P
Table 4 Parameters of Genetic Algorithms.
Population 40 Bit length 20
Generation 60 Crossover rate 0.8
Min-offset 5000 Mutation rate 0.02
Table 5 Performance Comparison of Case 1.
Settling Time | Max. Overshoot | Max. Voltage | estimated error
e
Fuzzy 38 11.37 % 0.57
Controller
Grey-Fuzzy 32 7.74% 0.18 0.24 %
Controller
GA-Grey-Fuzzy 25 32% 0.11 0.06 %
Controller
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Table 6 Performance Comparison of Case 2.

Settling Time | Max. Overshoot | Max. Voltage | estimated error
e
Fuzzy
4.7 17.04 % 0.48
Controller
Grey-Fuz

ey-ruzzy 4.2 9.75% 0.37 2.75%

Controller
GA-Grey-Fuzzy 31 0.01 % 0.11 0.36 %
Controller
(] -
» | |
Ref i g >
erence Sgnal S W ~ MX\ > u
» X' = Ax+Bu
Fuzzy Controller . y=Cxrbu w
W Ly DC Motor
Grey Modd > M J Sum.
_»
Fuzzy Controllerl
L Genetic Algorithms

Fig. 1. The block diagram of grey-fuzzy control with genetic algorithms.

NB NS Z0 PS PB
w 0.5
O 1 L 1 1
-2 -1.5 -1 -0.5 0 0.5 1 15
NB NS Z0 PS PB
u [05
O 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Fig. 2. Membership functions of g,, w and u*.
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Fig. 3. Membership functions of ¢, and 4u.
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Fig. 4. Evolution process of error function.
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=== Fuzzy
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\'I
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Fig. 5. Case 1: the response of electric current.
1.2
=== Fuzzy
------ Fuzzy+Grey
— Fuzzy+Grey+GA
_02 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 6. Case 1: the response of angular velocity.
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Fig. 7. Case 1: the response of control energy.

Current (A)
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! !
8

10

4 5
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Fig. 8. Case 2: the response of electric current.
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=== Fuzzy
------ Fuzzy+Grey
— Fuzzy+Grey+GA

_05 | | | | | | | |
0 1 2 3 4 5 6 7 8 10
Time (sec)
Fig. 9. Case 2: the response of angular velocity.
--= Fuzzy i
------ Fuzzy+Grey
— Fuzzy+Grey+GA .
_07 | | | | | | | |
0 1 2 3 4 5 6 7 8 10

Time (sec)

Fig. 10. Case 2: the response of control energy.
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