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Abstract 
A novel grey-fuzzy regulator using genetic algorithms for a dc motor is presented in this paper. 

The grey system theory is employed to design a grey prediction model. After the grey model predicting 

the feedback errors of the motor speed, a compensated energy will be generated for the fuzzy controller. 

Appending the grey predictor to the feedback control system, then the fuzzy inference engine receives 

not only the current data but also the future information. Furthermore, the optimal parameter of the 

grey model is acquired via genetic algorithms. Computer simulation results show that the regulation 

performance of the motor speed and the control energy is improved. 
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應用基因演算法之直流馬達灰色模糊調變 

余國瑞 

國立宜蘭大學電機工程學系副教授 

摘 要 

本文提出應用基因演算法之直流馬達灰色模糊調變新方法。灰色系統理論被用於設計灰色預

測模型。經由此灰色模型預測馬達轉速之回授誤差後，產生一補償電壓於模糊控制器。回授控制

系統附加灰色預測器，則模糊推理引擎不只接收現在資料亦包括未來訊息。此外，經由基因演算

法可獲得灰色模型之最佳參數。從電腦模擬結果證實應用基因演算法之灰色模糊控制器設計，可

有效改善馬達轉速與控制能量之調變性能。 

關鍵詞：灰色預測，模糊調變，基因演算法，直流馬達 
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I. Introduction 

The industrial level and technological idea have 
been changed by the impact of the automation 
recently. An important electrical control component is 
the dc motor, which is a power actuator device that 
delivers energy to a load. Because of features such as 
speed controllability, well-behaved characteristics, 
and adaptability to various types of control methods, 
dc motors are extensively used in numerous 
servomechanisms [5]. Thus, it is very important to 
study the regulation of dc motors. 

L.A. Zadeh first proposed the idea of fuzzy set 
[10]. The fuzzy inference system employing fuzzy 
if-then rules can control a plant using the human 
knowledge. Fuzzy controller has been widely used in 
industry for its easy realization. Much work has been 
done on the analysis of control rules and membership 
function parameters [8]. However, the traditional 
control strategies only adopted the previous state 
information as the input signal of the decision-making 
mechanism. This type of fuzzy control reflects the 
current status and is lack of adaptability. 

The grey system theory was established in 1982 
[2]. The grey predictor of a system can be built by 
only a few given data or undetermined information. 
Then it can be used to forecast the system outputs 
with high accuracy. The first-order one-variable grey 
model GM (1,1) is increasingly applied in many fields 
of engineering [6]. For example, a PD controller 
combined with a grey prediction model is used to 
control an inverted pendulum [4]. In [1], an integral 
variable structure controller with grey prediction is 
applied to compensate the speed of a synchronous 
reluctance motor. 

In [11], a fuzzy inference system with a grey 
predictor is utilized to regulate the speed response of a 
dc motor. Using only 3 past data of speed error, the 
grey prediction model is built. Appending the grey 
predictor to the feedback loop, the fuzzy controller 
receives not only the current data but also the future 
information. This type of control reflects both the 
current status and the future tendency of the states. 
Therefore, the regulation response of the dc motor can 
be controlled in advance. 

In this paper, a new grey-fuzzy regulation based 
on genetic algorithms is proposed. To enhance the 
accuracy of prediction, the genetic algorithms are 

applied to search the optimal parameter of grey model. 
The characteristics of genetic algorithms are the 
random information exchange among the population 
without constraint condition of the searching space 
[12]. Genetic algorithms employ chromosomes 
through three operations, reproduction, crossover, and 
mutations to generate offspring for next iterations. 
The advantages of genetic algorithms include 
derivative-free stochastic optimization, parallel-search 
procedure and applicable to both continuous and 
discrete problems. Thus, the performance of the 
grey-fuzzy regulator will be promoted after the 
optimal grey model is obtained. 

This paper is organized as follows. In section 2, 
the mathematical model of a dc motor is derived. In 
section 3, the structure of grey-fuzzy control with 
genetic algorithms is constructed. In section 4, 
simulation results with different initial conditions are 
shown. Conclusion remarks are given in section 5. 

II. State-Space Model of DC 
Motors 

The dc motor converts direct current electrical 
energy into rotational mechanical energy. Because of 
high efficiency, compact size, good consumption of 
heat and so on, dc motors are extensively applied to 
many kinds of actuators [7]. The equivalent electric 
circuit shows that u  is the armature voltage (V), R  

is the armature resistance ( Ω ), L  is the armature 
inductance (H), be  is the back electromotive-force 

voltage (V), ω  is the angular velocity (rad/sec), and 

i is the electric current (A) of armature. The physical 
relation is expressed as 

beRi
dt
diLu ++=             (1) 

ωω
mLmm bTT

dt
dJ −−=         (2) 

ωbb Ke =                    (3) 

where mJ  is the rotor inertia (kgf-cm-sec2), mT  is 

the rotor torque (kgf-cm/A), mb  is the rotor damping 

ratio (g-cm/rpm), LT  is the load torque (kgf-cm/A), 

and bK  is the back electromotive-force constant 

(v．s/rad).  

Substituting Eq. (3) into Eq. (1) and rearranging 
Eq. (2) yields 

u
L
1

L
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L
R

dt
di b +−−= ω           (4) 



國立宜蘭大學工程學刊(2007) 

- 146 - 

iK
J
b

dt
d

mL
m

m +−= ωω
             (5) 

where mLK  is the torque constant (N-m/A). Let the 

electric current of armature and the angular velocity 
be the two state variables. Then the linearized 
state-space model of the dc motor could be obtained: 
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The parameters of the dc motor are listed in Table 1. 

III. Grey-Fuzzy Regulation 
Using Genetic Algorithms 

1. Fuzzy Controller 

The fuzzy inference system employing fuzzy 
if-then rules can control a plant using the human 
knowledge. The design procedure of traditional fuzzy 
logic controller includes fuzzifier, fuzzy rule base, 
fuzzy inference, and defuzzifier. 

In this paper, the linguistic variables are angular 
velocity error we , angular velocity w , control 

energy *u , estimated error of angular velocity wê  

and compensated energy uΔ . The Mamdani fuzzy 

inference system uses minimum and maximum for 
T-norm and T-conorm operators, respectively. With 
max-min composition, the consequence )(' yBμ is 

)]()()([max)(' yxxy ll
2

l
1 B2A1A

m

1lB μμμμ ∧∧=
=

    (7) 

where 1x , 2x , and y  represent the fuzzy sets we , 

w , and *u , respectively; )( 1A xl
1

μ , )( 2A xl
2

μ , and 

)(ylBμ  mean the membership functions of we , w , 

and *u , respectively; l  is the index of membership 

functions for every fuzzy set; m is the number of 
triggered fuzzy rules. 

The fuzzy inference )(' zDμ  for the fuzzy 

controller with grey prediction is 

)](*)([max)(
1

' zxz kk DC

n

k
D μ∧μ=μ
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      (8) 

where *x  and z  represent the fuzzy sets wê  and 

uΔ , respectively; *)(xkCμ  and )(zkDμ  mean the 

membership functions of wê  and uΔ ; k  is the 

index of membership functions for every fuzzy set; n 
is the number of triggered fuzzy rules. 

Defuzzification is used to extract a crisp value 

from a fuzzy set. There are a lot of methods for 
defuzzifying a fuzzy set. The center of gravity 
defuzzification is adopted in this paper [9] 
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where *Y  and *Z  represent the crisp values of 
control energy *u  and compensated energy uΔ , 

respectively, i  and j  are the index of consequent 

rules. 

2. Grey Predicton Model 

A system is called “grey” when its part of 
information is unknown [3]. Grey system theory has 
been applied to many fields of engineering. It can be 
used to construct a grey model (GM) for uncertain 
systems with incomplete information. The GM 
describes a system behavior via a first order 
differential equation and can be served as a useful 
predictor with only few past data. The approach to 
build up the predictor of the state error is depicted as 
follows. 

Assume that the original sequence data of the 
state error with 3 samples is expressed as 

=)0(xδ { )(),(),( )()()( 3x2x1x 000 δδδ }   (11) 

After the first order accumulated generating operation 
(AGO) is taken on δx(0), the sequence data δx(1) is 
obtained by 

=)1(xδ { )(),(),( )()()( 3x2x1x 111 δδδ }    (12) 

where δx(1)(n)=∑
=

n

i
ix

1

)0( )(δ , ∀n∈{1, 2, 3}. 

The generating mean sequence data Z(1) is 
defined as 

Z(1)(n)= 
2

1nxnx 11 )()( )()( −+ δδ
      (13) 

∀ n∈{2,3}. The grey difference equation is 
established as 

δx(0)(n)+aZ(1)(n)=b                (14) 
∀ n∈{2,3}. Then, the grey model of the state error is 
described by the first order differential equation 

btxatx
dt
d =+ )()( )1()1( δδ            (15) 

The parameters a and b can be estimated by least 
square method as 
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The solution of Eq. (15) is 

a
be

a
b1x1nx an01 +⎥⎦
⎤

⎢⎣
⎡ −=+ −)()(ˆ )()( δδ     (17) 

Taking inverse accumulated generating operation 
(IAGO) on )(ˆ 1xδ , the predictive state error of the dc 

motor is obtained by 
)(ˆ 0xδ (n+1)= )(ˆ 1xδ (n+1)- )(ˆ 1xδ (n) 

=(1-ea) an0 e
a
b1x −

⎥⎦
⎤

⎢⎣
⎡ −)()(δ     (18) 

3. Grey-Fuzzy Regulation 

Grey prediction model is derived from the grey 
system theory. The main purpose of the grey model is 
to find the relation from a set of data and infer the 
tendency of the future. Therefore, the fuzzy controller 
uses the prediction signal of grey model as the input 
of inference system in this paper first. The fuzzy 
controller combined with a grey predictor is applied to 
regulate the angular velocity of a dc motor. Fig. 1 
shows the block diagram of control structure. 

Based on fuzzy theory, control energy *u  is 

inferred from fuzzy controller according to the input 
variables: angular velocity error )(tew  and angular 

velocity )(tw . The estimated error of angular 
velocity )1(ˆ +tew  is obtained by sending the signal 
of angular velocity error )(tew  to the grey predictor. 

The compensated control energy uΔ  is inferred 

from another fuzzy controller according to the 
estimated error of angular velocity )1(ˆ +tew . If the 

compensated energy uΔ  is added to the control 
energy *u , then the total input energy of the dc 

motor will be the output sum of two fuzzy controllers. 
Therefore the regulation response of the dc motor can 
be controlled in advance and the performance will be 
promoted. 

The design algorithm of the fuzzy controller with 
grey prediction is illustrated as follows. 
(a) Built the grey prediction model for the feedback 

error of the state variable )(tw . Measure a series 
of error signal: )2( −twe , )1( −twe , and )(twe . 

Calculate the estimated error )(ˆ 1tew + , t ≥ 3 

from equation (18). 
(b) Design the fuzzy inference engine for regulation 

of )(tw . The control energy )(* tu  is obtained 

by equation (9). 
(c) After the grey prediction of step (a), the 

estimated error )(ˆ 1tew +  is used as the input 

signal of another fuzzy controller. The 
compensated energy is derived by equation (10). 

(d) The total control energy )(tu  of the dc motor is 

=)(tu )(* tu + )( 1tu +Δ          (19) 

By substituting equation (19) into equation (6), the 
regulation response of system is acquired. 

4. Genetic Algorithms 

In traditional grey model, the sequence data Z(1) 

(13) is applied to derive the grey prediction model 
(18). However, the process of the original grey 
information for whiting is not optimal. To reduce the 
error of grey prediction, a new sequence data is 
introduced in this paper 

Z(1)(n)= )1()1()( )1()1( −−+ nxnx δααδ      (20) 
where ].1,0[∈α  

It means that the traditional grey model is just a 
special case of (20) for .5.0=α  To seek the 
optimal value of α , the genetic algorithms (GAs) are 
applied. The GAs encodes each unit in a parameter 
space into a binary bit string called a chromosome, 
and each unit is connected with a “fitness” value. GAs 
usually keeps a set of unit as a population, and 
constructs a new population using genetic operators 
such as selection, crossover and mutation, in each 
generation. After getting a number of generations, the 
population contains members with better fitness 
values. 

The α  will be coded by a binary string and 
constitute a chromosome. The population is generated 
randomly. After solving the grey prediction equation, 
the grey-fuzzy controller is obtained and the fitness of 
the population is evaluated. In this paper, the fitness 
function is defined as follow: 

eoffsetMINPI ∑−= _         (21) 
where PI is the fitness value, e is the error of the 
regulation and MIN_offset is a constant. After the 
fitness function is calculated, the fitness value and the 
number of the generation determine whether the 
evolution process is stopped or not. 

IV. Computer Simulation 

The Gaussian membership functions of fuzzy sets 
are employed in this paper. The number of 
membership functions of input we , w , and wê  are 

3, 5, and 3, respectively. The number of membership 
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functions of output *u  and uΔ  are 5 and 3, 
respectively. In fuzzy inference engine, Minimum and 
Maximum are adopted for the T-norm and T-conorm 
operators, respectively. 

The first fuzzy controller is a two-input 
single-output Mamdani fuzzy model with 15 rules. 
These rules are expressed as 

1R : IF we  is N and w is NB, THEN *u  is PS 
2R : IF we  is ZO and w is NB, THEN *u  is PB 

M  
14R : IF we  is ZO and w is PB, THEN *u  is NB 
15R : IF we  is P and w is PB, THEN *u  is NS 

These fuzzy rules are summarized in Table 2, where 
NB means negative big, NS means negative small, ZO 
means zero, PS means positive small, and PB means 
positive big, respectively. 

The second fuzzy controller is a single-input 
single-output Mamdani fuzzy model with 3 rules. 
These rules are expressed as 

1R : IF wê  is N, THEN uΔ  is P 
2R : IF wê  is ZO, THEN uΔ  is ZO 
3R : IF wê  is P, THEN uΔ  is N 

These fuzzy rules are summarized in Table 3, where N 
means negative, ZO means zero, and P means positive, 
respectively. 

Simulation results are obtained by Matlab 
software. According to two different initial conditions, 
the performance of regulation will be compared 
among the traditional fuzzy controller, the grey-fuzzy 
controller and the GA-based grey-fuzzy controller.  

Case 1: The initial values of state variables X are 
[0 1]T. The membership functions of linguistic 
variables we , w , and uΔ  are with the same 

universe [-2 2] as shown in Fig. 2 and Fig. 3, 
respectively. The membership functions of linguistic 
variables *u , and wê  are with the same universe 

[-1 1]. First, the grey predictor estimates the error of 
angular velocity. According to the genetic algorithms 
of section 3.4, the optimal grey model is obtained. Fig. 
4 shows the evolution process of regulation error 
function. Table 4 lists the parameters of the genetic 
algorithms. Fig. 5, Fig. 6 and Fig. 7 show the optimal 
regulation response of electric current i  angular 
velocity w , and control energyu, respectively. 

On the other hand, based on the traditional fuzzy 
controller and the grey-fuzzy controller, the regulation 
response of i, ω , and u are plotted in terms of 

dashed lines and dotted lines, respectively. In this 
computer simulation, the grey predictor launches its 
function after the fourth data. The average estimated 
error e  is defined as 

3

ˆ
4

−

∑ −
=

N

ee
e

N
ww

          (22) 

where N  is the number of data. Table 5 

demonstrates that the GA-based grey-fuzzy controller 
owns the best performance than the traditional fuzzy 
controller and the grey-fuzzy controller. 

Case 2: The initial values of state variables X are 
[1 2]T. The membership functions of linguistic 
variables we , w , *u , and wê  are with the same 

universe [-10 10]. The membership functions of 
linguistic variables uΔ  are with the universe [-12 
12]. By the same design procedure of case 1, the 
optimal regulation response of electric current i , 
angular velocity w , and control energy u  are 
plotted in terms of solid lines as shown in Fig. 8, Fig. 
9 and Fig. 10, respectively. 

Using the traditional fuzzy controller and the 
grey-fuzzy controller, the regulation response of i, 
ω , and u are plotted in terms of dashed lines and 

dotted lines, respectively. Table 5 also displays that 
the GA-based grey-fuzzy controller owns the best 
performance than the traditional fuzzy controller and 
the grey-fuzzy controller. 

V. Conclusions 

In case of system with model uncertainty, fuzzy 
logic is suitable for the controller design. In this paper, 
a grey-fuzzy controller is developed for the speed 
regulation of a dc motor first. The grey predictor is 
incorporated into a fuzzy controller. The grey model 
is employed to estimate the state error of motor speed 
such that the control signal is appropriately adjusted in 
advance. Furthermore, the optimal parameter of the 
grey model is acquired via genetic algorithms. After 
using the GA-based grey-fuzzy controller, either the 
maximum overshoot or the control energy is reduced. 
Computer simulations have demonstrated the 
effectiveness of the design 
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Table 1 Parameters of the DC Motor. 

R = 992.  )(Ω  L = 310420 −×.  )(H  

mJ = 210521 −×.  )( 2cmkg −  bK = 310124 −×.  )/( radsV −  

mlK = 3109265 −×.  )/( ampmN −  mb = 410181 −×.  )sec/( radcmN −−  
 

Table 2 Fuzzy Rule Base 1. 

 
we  

 N ZO P 

NB PS PB PB 

NS ZO PS PB 

ZO NS ZO PS 

PS NB NS ZO 

 
 
 

w 
 
 

PB NB NB NS 

 
Table 3 Fuzzy Rule Base 2.  

 
wê  

 N ZO P 

N   N 

ZO  ZO  

 
 
uΔ  
 

P P   

 
Table 4 Parameters of Genetic Algorithms. 

Population 40 Bit length 20 

Generation 60 Crossover rate 0.8 

Min-offset 5000 Mutation rate 0.02 

 

Table 5 Performance Comparison of Case 1. 

 Settling Time Max. Overshoot Max. Voltage estimated error 
e  

Fuzzy 
Controller 

3.8 11.37 % 0.57  

Grey-Fuzzy 
Controller 

3.2 7.74 % 0.18 0.24 % 

GA-Grey-Fuzzy 

Controller 
2.5 3.2 % 0.11 0.06 % 
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Table 6 Performance Comparison of Case 2. 

 Settling Time Max. Overshoot Max. Voltage estimated error 
e  

Fuzzy 
Controller 

4.7 17.04 % 0.48  

Grey-Fuzzy 
Controller 

4.2 9.75 % 0.37 2.75 % 

GA-Grey-Fuzzy 

Controller 
3.1 0.01 % 0.11 0.36 % 
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Fig. 1. The block diagram of grey-fuzzy control with genetic algorithms. 

 
Fig. 2. Membership functions of we , w  and *u . 
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Fig. 3. Membership functions of wê  and uΔ . 
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Fig. 4. Evolution process of error function. 
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Fig. 5. Case 1: the response of electric current. 
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Fig. 6. Case 1: the response of angular velocity. 
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Fig. 7. Case 1: the response of control energy. 
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Fig. 8. Case 2: the response of electric current. 
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Fig. 9. Case 2: the response of angular velocity. 
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Fig. 10. Case 2: the response of control energy. 
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