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Intuitively Reduced-Order Models
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Abstract

From a practical viewpoint, the model-reduction control problem is revisited for a general class of systems.
Further rather than just finding out the approximate model, the point of this work is to propose a new methodology
for analysis and design of a system via its reduced-order model and without any previous restrictions on the plant.
By dealing with the unstable subsystem, this paper presents procedures for intuitive model reduction in the
frequency domain. An extended all-parametric controller synthesis algorithm is thus derived for stabilizing both
the reduced and original plants as well as for providing more freedom to cope with multiple performance
requirements. It is shown that the closed-loop transform matrices of these two systems have a similar outlook and
their responses are also similar. Finally, the efficiency of this new methodology in facilitating the analysis and
synthesis of control objectives is well illustrated by a widely used example.
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|. Introduction

The model reduction problem has attracted attention in the past two decades due to its advantages in
facilitating the analysis and design for a complex plant. A considerable amount of literature has been devoted to
develop various methodologies. Among the recent techniques, balance truncation has become an indispensable
tool [1,2]. In [3], a characterization of the solution for the H¥ model reduction problem is reported. For brief

overviews over more recent activities we refer the reader to [4]. However, almost all the derivations of these
previous works are based on numerous assumptions on the target plant. It essentially needs to be stable and
minimal phase. Moreover, although a great deal of work has been done on obtaining reduced-order models for
complex systems, further investigation is need on the applicability of these models for designing controllers that
would work well with the original systems.

As known, there are many situations where the system is inherently unstable and of relatively high dynamic
complexity; i.e., apractical plant (such as chemical reactor or inductive motor) usually consists of not only stable
but also unstable poles. Therefore, it is hard to apply most of the previous results in the real world. A few
attempts have been made in recent to widen the class of linear systems that can be approximated [6-13]. However,
the basic objective of control engineering is more than to just examine whether the behavior of systemsis suitable
or not. It is utterly imperative for industrial application to compensate the whole system to achieve an acceptable
characteristic while it originally doesn’ t. Since the reduced-order model embeds some errorsin a certain frequency
band, such a difficult task can or can’ t be accomplished by a reducing model (especially for an unstable one) is
still wrapped in mystery [14]. The model-reduction control problem is hence revisited here in frequency domain.
For ageneral class of plant P containing both of LHP and RHP poles, there are a series of traditional questions
need to be answered:

i) How to find amodel G that has lower order but contains enough messages for P to facilitate the design of the
controller?

ii) How to construct the controller C for G to stabilize the closed-loop subsystem as well as to achieve some
desired performances? Such as reference input tracking, disturbance rejection, or arbitrary pole zero assignments?

iii) Does C still work well for the original plant P? i.e.,, Can C stabilize P? Can the real system track a desired
signal and reject some undesired disturbances? And etc.

iv) How can we analysis the characteristic of the whole real system from this reducing-order model ?

The keynote of our work is to analyze and control an unstable plant via its reducing-order model. It will be
shown in the following sections that all these questions can be solved by a quite simple and sraightforward
approach. Section |l gives some notations and preliminaries. By taking out the stable parts, section |11 presents
procedures for intuitive model reduction. It is noted that our approach is directly derived in frequency domain
instead of solving Lyapunov matrix equations, and it makes the proposed algorithm simpler and numerically more
efficient. In section IV, the all-parametric controller synthesis algorithm for MIMO cases [5] is modified to become
an extended version for compensating both of the reduced and original plants. Finally, an illustrative example is
givenin section V to verify the availability of this new methodology.

1. Preliminaries

Throughout this paper, we use the following notations. Italic A denotes a rational matrix or a linear operator. A
denotes the set of rational matrices whose elements are all proper stable or the norm space {A|||P4| <¥}, where

|| || can be any Euclidean norm. As the plant is originally unstable, we consider an unit-feedback control scheme
asFig.1. Where r,d,u,and Yy denote the exogenous input, disturbance, control signal, and plant output vectors,

respectively. There are no restrictions on the plant. However, just for convenience, the plant P isn” mand the
controller C ism” n. Hence, PC isn” n, and it is assumed of course that all other matrices (vectors) are of
compatible dimensions.
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The standard definition of internal stability is nhow given.
Definition 1 [5]
The feedback system of Fig.1. is denoted as S(P,C) and isinternally stable or asymptotically stableif and only if
H(P,C)° ECSS | Zpgl A
where S° [I +PC]':L is the sensitivity matrix.

)

In order to stabilize an open-loop unstable plant, Youla had proposed the most famous solution, all-parametric
optimal controller. It plays an important roles in our analysis and the design for model-reduction control.

Lemma 1l (see Theorem 4.1.60 and Corollary 4.1.67 of [5])
Let the given plant P has a double coprime factorization
P=A'B=BA" @)

where AB,A,B T A are left and right coprime matrices of P , respectively. For this double coprime
factorization there exist transfer matrices X,Y, X,,Y,T A satisfying the Bezout identity

éxl Yl@?Al ) Y@— él Ol;l 3
e u u- u
EB AIB, X0 & g

Then the stabilizing controller associated with a particular choice of admissible KT A possesses the transfer

matrix
C=(v+ A&K)(X- BlK)'1 4)

and det(X - BK)? 0

[11. Intutive Model Reduction

In this section, attention is restricted exclusively to a class of MIMO plants which consist of both stable and
unstable modes. Let the system is described by the transfer matrices

(?Pn P12 sz U
€ u

P(S) — (:apzl P22 P2ml;|
e.. .u
é a
éPnl anCl

where
5§
h; O (s- gy)
R (s)= = = 3 fori=1..n, j=1..m, (5)

O (S' aq'jk )O (S- b.jk)
k=1 k=1

and h; isthereal gain and &, by, ,g; are the complex poles and zeros. Furthermore, we assume Re(a;, )3 0

denotes the k’ th unstable poles of B, (s). The method for model oreder reduction is determined by the criterion

used for deciding what constitute the main feature of the systems. In general, these criterion may be represented
in terms of a suitable norm and the optimal approximate model isyielded from

mnl- 7, ®

for LE p£¥ be some appropriate Euclidean norm. Unfortunately, such a widely-used methodology is
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obviously failed for unstable plants. We are thus forced to try an alternative approach which is based on
obtaining a model of lower order such that its impulse response matches that of the original system in an
acceptable manner. As pointed in [6], the low-frequency behavior is much more important in control system
design and hence cannot be neglect. The reduction problem can be reformulated in terms of minimization of the
error function

¥

J:Q

where p(t), g(t) are impulses response of plant P and model G, respectively. However, as P is unstable, the

p() - g(t)[at (7)

first thing should take into mind is to avoid J being infinity. From eqn. (5), its impulse response can be
partitioned as

¢ 0
é a
s b (s)
() = -1e u
= Ly at
€0 (s- ay)u
ek=1 u
e 4 % 6% y
e O (s- k) - by ()0 (s- ij)ZO(S' ay)u
168 k=21 k=L k=1 u
e % 4 ®
e s- b. u
é g( uk) l,,J
€ a
Where the second parts of p; (t) is stable such that
6z 4 1 6% y
§§hO (s- ay)- by (9)O (s- by ):O (s- ay)u
16 k=1 k=1 =1 u
L 1(? o 2 G £c; exp(-1t;) )
é s- b, u
é g( uk) l,,J
€ a

foral t® Oand for some ¢; >0, | ; >0. This gives the idea that every plant with the same unstable poles

should present a simmilar unstable response at time t ® ¥ . In particular, several authors [8,15] have shown that:
it is necessary to guarantee that the number of RHP poles of the reduced model is equal to that of the original
unstable system. In order to retain this“main” unstable feature of the original system, egn. (8) suggests that

2
a,(s) = O (s- ay) (10)

is a denominator candidate for approximating P, (s) . However, determination of the corresponding optimal

numerator is still adifficult job. A traditional way (for example see [16]) is to balance and trucate the stable parts.
Another possible solution [17] suggested that the parameters of the reducing model are determined by minimizing
aweighted mean square error funtion involving the frequency response in some period. Nevertheless, in order to
keep the algorithm simple and numerically more efficient, we suggest that

(9 =m0 (s~ g an
where
b (9)
G. =
ij (S) aij (S)
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|

W :: pj, for ry£q;,ad 1 ® p; 12
|
1

m = lim ———~ (13)

and Re[g ] £ Re[g;] , for dl j>i.

So that both Gand (P- G)are proper and one can ensure the similar steady-state value for the plant and
model aswell as can keep some coupling relationships of pole-zero.

Remark 1: Indeed, thisintuitive approach of splitting the full order model into a stable and completely unstable
subsystems is not new. In [11,12], they apply some existing reduction techniques to reduce the stable part and
then yield a new subsystem by combining the unstable part. However, we claim that the main idea behind the
model-reduction control technique is to produce a lower-order model with enough information so that it could
replace the given system to facilitate the “ design and analysis” of the controller. We will show that this objective
can be well done by only taking the unstable subsystem.

V. Main Results

Again, suppose we represent the intuitive model reduction process as
P=G+P 14
where G contain all the unstable polesof P, and P T A . The model-reduction control technique is shown in
the following Lemma.

Lemma?2

Letting the contoller C of the original system S(P,C) be selected as in Lemma 1 as well as the reduced
system S(G,C,) be constituted by the unstable part of P and the corresponding stabilizer C,, then there exist
all-parametric controllers C, satisfying

C+ :{(Y+ + A+1K+)(X+ h B+1K+)| I'<+‘|\ A’det(x+ h B+1K+)1 0} (15)
where
sX,, Y. U6A, -Y.u é ol
G=A'B. TBA ¢ O i iTe
B AwB. X.g & g
and
(v, +AK,)=(Y+AK), (X, - B,K,)=(X- BK)+P (Y + AK) (16)

such that S(P,C) is asymptotically stableif and only if S(G,C,) isasymptotically stable.

Proof:
IF

Suppose S(G,C,) isasymptotically stable, i.e. H(G,C,)T A . Define
Lo [(X- BK)+P(Y +AK)"* (17)

Then, it is seen that from (16)

Lo [(X- BK)+(G+P )(Y + AK)]*
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=[(X, - B,K)+G(Y, +A K ) *=L, (18)

Therefore
R -1p
H(PC)OA(|+PC) (1+PC) P d
eC(| +PC)* |- C(l+PC)*Pg
_e(X -BK)L - (X-BK)LPuU
CEY+AK)L - (Y+AK)LPY
=q(x+ - B+1K+)' P (Y+ +A+1K+)]L+ - [(X+ - B+1K+)' P (Y+ +A+1K+)]L+(G+P- )L:J
& (Y, + AL KL, - (Y, + A KL, (G+P) a
=H,+H,
where
gX,-B,KyL, - (X,-B,K,)LGU_
w=é \ g=H(G.C,)
e(Y+ +A+1K+)L+ I - (Y +A+ K+)L G
and
_ é P- (Y+ + A+1K+)L+ P- (Y+ + A+1K+)L+(G+ P-)' (X+ - B+;|_K+)I—+F)- u
g 0 - (Y. +AKLP o
& PC,S, PCS(G+P)-S,Pu
_g 0 - S+F)- H

Since H(G,C,)T Athen, S,,S,G,C,S,,C,S,Gand P T A also. Thus H,,,H,,T A, asis H(P,C).

+4 +17
ONLY IF:
é -PF 0.
Similarly, suppose H(P,C) ° a al A, then
&S | -CFy

H(G.C.)o &X, - B, KL, - (X, - B,K,)L.GU
TG, HALKLL, - (Y, +AK,)LGH

_g(X- B,K)+P (Y+AK)IL -[(X- BK)- P (Y+AK)L(P- P)u

& (rrAKL |-V +AKLP-P)
= H, +H,
where
l:g’(X-BlK)L (X - BK)LPE HPO)
gY+AK)L |- (Y+AK)LP
and
eP(Y“‘AlK)'- - P(Y+AK)L(P- P)+(X - BK)LP U
S-S (Y + AK)LP g
_&CS - PCS(P-P)+P.0
&0 P \

Again, since H(P,C)T Athen, S, ,CS,C® and PT A , then H,,H,T A, asis H(G,.C,) .

Q.E.D
Lemma 2 provides the technique to stabilize the unstable plant via its intuitive reduced-order model.
Analogous to the proposed properties in [5], there are no restrictions on the target plant. It can be unstable,
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improper, nonminimum phase, MIMO, and even nonrectangular. This result release ailmost all obstructs in the
development of model-reduction control. Moreover, it is utterly imperative for industrial application to
compensate the whole system to achieve an acceptable characteristic while it originally doesn’ t. In particular, a
traditional multipurpose controller [18] is usually needed to achieve the following design objectives:

(i) arbitrary pole assignment, and
(ii) some zero assignments to deal with the problem of disturbance rejection and reference signal tracking.
The important of pole assignment has been shown in many literature, we do not repeat this in here.
Reconsider the system of Fig. 1, the output is given by
y=Pu
And the closed-loop transfer matrix isyielded as
T=C(l +PC)'P
Rearrange the sensitivity matrix
So (I +PC)? :[(X - B K)(X - B,K) '+ P(Y+AK)(X - BK)* .
=(X- BK)[(X - BK)+P(Y +AK)]"*
=(X- BK)L (19)
Moreover, follow (18) and Lemma 2 we have
T=(Y+AK)(X- BlK)'l(X - BK)LP
=(Y +AK)LP
=(Y, + ALK)L(G+P) (20)

It iseasily seen that the closed-loop transform matrices of these two systems (G and P ) have a similar outlook
and so do their response behaviors. Therefore one can analyze the over-all behavior or performance from the
reduced-order model directly. Since the all-parametric controller synthesize algorithm need to choose a suitable
KT A and

Lo [(X- BK)+P(Y +AK)* =[(X - BK)+B ALY +AK)]
=(X+BA'Y)* (21)

will not be affected by the selection of K and so does P in general, the synthesis problem of arbitrary pole-
placement controller can be solved by the selection of suitable poles of (Y + AK), or equivalently, by the

selection of suitable poles of (Y, + A, K,). Thisimplies that one can only take the reduced model to start the
analysis and synthesis of the multipurpose controller, and, after obtaining the reduced controller C,, end the

jobs with substituting the desired controller C by Lemma 2. We summarize the design algorithm asin Lemma 3.
Lemma3
Letting the controller C, of the original system S(P,C) be selected asin Lemma 1 as well as the reduced

system S(G,C,) be constituted asin Lemma 2, then the arbitrary pole-placement control can be achieved if there

exist an auxiliary function K, T A such that

Y. (9+A, KO =29 (22)

where Z(S)isan arbitrary matrix function with desired poles.

Remark 2: Lemma 2 and 3 has shown that the analysis and synthesis problem of a system can be solved viaits
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unstable subsystem. Since, in general, the unstable part of a plant only has a smaller dimension than that of the
original, and so is the corresponding controller, this new methodology in the above Lemmas would facilitate the
design objectivity. Furthermore, if the system is all stable, the intuitively model-reduction control algorithm is still
available by starting with an arbitrarily selected subpart.

Now consider the second objective of multipurpose control. The tracking error with disturbance in Fig.1 is
defined as

e=r-y-d (23)
With the sensitivity matrix defined as (1), we have
e=9r-d) (24
and u=CS(r-d)
To track and reject high order reference signals r(t) and disturbances d(t) (for example, unit step or ramp

signals etc.), the right hand side of eqn. (24) musts not have any pole in RHP [18], i.e. the sensitivity function
matrix S(S) must have a large enough number of zeros to cancel the poles of r(s)- d(s) in RHP, where r (),

d (s) denote the Laplace transform of r(t) and d(t) respectively. Similarly, let

§.(9- dy()
—€2 2 u 2
QL) e . a (25)
é
é’n(s) - dn(s)[]
where
A
h,O (s- wy)
Qi(s) =— = 5 for i=1..n, (26)
O (S' Uik)O (S' Vik)
k=1 k=1
as h, isthereal gainand u,,v, ,w, arethe complex poles and zeros. Again, we assume
4]
fi(s) =0 (s- wy) (27)
k=1

denotes the unstable poles of Q. (s). For the purpose of asymptotically tracking and disturbance rejection, we

have to synthesize a controller C to guarantee
I 0 =0
i.e., the sensitivity function S has the same nonminimum phase to cancel f (S). Such that
e(s) = S(s)Q(s)1 A (28)

Recalling (19) and (21), the synthesis problem of reference tracking and disturbance rejection controller can be
solved by the selection of suitable zeros of (X - BlK)T A to achieve pole-zero cancellation with r,d . Moreover,

following Lemma 2 we have
e:[(X+- B+1K+)_ P. (Y+ +A+1K+)]L+(r- d) (29)
Thus the asymptotically reference tracking and disturbance rejection control algorithm is derived in Lemma 4.

Lemma4
Letting the contoller C of the original system S(P,C) be selected asin Lemma 1 as well as the reduced system
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S(G,C,) be constituted asin Lemma 2, and the reference and disturbance signals are described as (25)-(29), then

the asymptotically output tracking and rejection occurs if there exist an auxiliary function K, T A such that

(X,(5)- BL(9K(9))- P.(S)Y. () + AL (K (9) = F(IW(S) (30)
where f(9) isdefined by (27) and W(s) is an arbitrary matrix function without unstable mode as f(S).

Remark 3: Since the all-parametric controller ensures the internal stability of systems [5], i.e., there is no
unstable pole-zero cancellation occurred between P and C , the stable subsystem P just plays the role of
another auxiliary transfer matrix in Lemma 4. As the major computational efforts lie in how to solving the
factorization pairs in (3), this new technique will still diminish a good deal of the desired works in the design
procedure. Notably, if the stable part is of very high order, e.g., (s+1)7, the model-reduction control algorithm is
clearly helpful for the analysis and design of systems.

Remark 4: Since the required parameters in lemma 3 are not entirely the same as those in lemma 4, it is obvious
that the design criteria of (22) and (30) are linear dependent. Therefore the multipurpose controller is not hard to
obtain via a suitable selection of K, (s). Furthermore, as there is no need to guarantee K =K, in egn. (30), the
choice of K may also provide some degree of freedoms for performance design. The completely pole-zero
assignment or other optimal design is also possible achieved from the identity (20) .

Remark 5: Although the derivations of this section are based on the unstable subsystem, the application of
these results to an all-stable system is quite straightforward. For convenience, we sort out the intuitive model-
reduction control algorithm as follow:

i) Split the original system into two subsystems. For unstable systems, one of the subsystems must contain all
the unstable poles. Take the unstable subsystem (or the lower-order one for stable system) as the reducing-
order model.

i) Follow lemma 2 to find out all parameters, i.e., the A, B, , A, B,;, X, Y,, X, and Y ;.

iii)Follow Lemma 3 and 4 to determine a suitable K, for multipurpose control.

iv) According to lemma 2, the desired controller isyielded from egn. (16) with the second auxiliary parameter K .
An exampleis now given to confirm the efficiency of this new methodology.

V. An lllustrative Example

For illustration, we consider the system in Fig.1 with a fourth-order unstable and nonminimum-phase transfer
function which used in several literature [18,19].

P(s) = 60s° + 25850 s° + 685000 s- 2500000
s’ +105s° +10450 s” + 45000 s - 500000

Where P(s) have one RHP pole and one RHP zero. Actually, P(s) has poles at - 50+ 86.60i , -10, 5 and zeros at —
402.2, -31.89, 3.248. Several authors had attempted to derive different techniques for obtaining reduced model for
this unstable plant. All of these techniques will take numerous mathematic or numerical works to find the suitable
parameters of G(s). Nevertheless, it cannot guarantee that the controlled behavior of the reduced model is equal
to that of the original unstable system. Thus our results of intuitively model reduction control would facilitate the
design. The original plant is easily split to

és+5 - s’ +60s® +14000 s+ 600000 U

P(s) = +
) gs- 5 s°+110s? +11000 s +100000

It is straightforwardly to yield the reduced model as

G=s+5
s-5
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Now suppose we have to design a suitable controller to stabilize the closed-loop system in Fig. 1, to
assignment a pole in 3s+5=0, and to track an unit step reference input. Utilize the all-parametric controller
synthesis algorithm in Lemma 1; we select the left and right coprime matrices of G

s-5 S+5

= =—) B, =B, =
A=A ' 3s+5

and the Bezout identity pairs

X, =X,=1, Y, =Y,=2
Such that

X,A +Y,B =1
and the all-parametric stabilizer isyield as (15)

C+ :(Y+ +A+K)(x+ - B+K)-1

Moreover, as the system needs to track a unit step reference signal, K, isdetermined from

(X, (9)- BL(9K, (9)- P (9(Y, (9 + A, (9K, ()

has azero at s=0 to cancel the unstable mode of reference input. And
(Y, (s)+ A, (9K, (9L,

contains the poleat s=-5/3, Thus

K, =22

+

At last, according to Lemma 2, it is easily to yield the desired multipurpose controller with K = K, .and

_ - s*+60s? +14000s + 600000
s® +110s? +11000s + 100000
_ 8.2s* +901s® +90090 s - 809000 s- 100000
9s* +573s® - 106720 s? + 4892000 s

C(9

Such that the closed-loop transfer function has poles at -5/3, -10, and -50+ j86.6.

Figure 2 demonstrates the asymptotically stable and reference signal tracking properties of the closed-loop
system. In this example, it is seen that the synthesis of multipurpose controller for this rather high-order system
has been reduced to a simple case, and so that X,Y, K can be selected as simple scalars. This really diminishes a

good deal of the desired effortsin the design procedure.
V1. Conclusions

In this paper, the extended all-parametric controller synthesize algorithm via a reduction-order model is derived.
Based on this new methodology, intuitive model-reduction control problem can be easily solved without any
restriction on the plant as those in the previous literature. That is, the system can be unstable, improper,
nonminimum phase, MIMO, and even nonrectangular. While one is not only needed to find an approximation
model but also needed to compensate characteristics of the whole system, this new technique possesses much
computational advantage over the existing approaches in multipurpose control.
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Fig 1 The closed-loop system.

Fig 2 Step response of the example.
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