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Abstract

In this investigation, a computational procedure for the analysis of impact-induced transverse waves in
mechanical systems with variable kinematic structure is developed. The dispersive nature of the impact-induced
transverse waves is examined and it is shown that the phase velocities of the waves have different frequencies, which
depend nonlinearly on the wave number as well as the angular velocity of the beam. The effect of the mass capture
is demonstrated using a simple model that consists of a rotating beam impacted transversely by a rigid mass. The
equations of motion are developed using the principle of virtual work in dynamics. The jump discontinuity in the
system velocity vectors as the result of impact are predicted using the generalized impulse momentum equations.
The results obtained in this study indicated that the angular velocity of the beam and the change in the system
topology has more significant effects on the wave velocities of low frequency waves as compared to high frequency
waves.
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|. Background and Object

Many mechanical systems are subjected to changes in the kinematic structure during their functional operations. Mass
capture, mass release or sudden addition or deletion of kinematic constrains are possible sources of changes in the
mechanical system topology. Examples of such systems are machine tools, weapon systems, and robotic manipulators. The
purpose of this project is to develop a computational procedure for the analysis of impact-induced transverse waves in
mechanical systemswith variablekinematic structure.

Several investigations were concerns with the intermittent motion or the topology change of mechanical systems.
Wehage and Haug [1] developed a method for dynamic analysis of systems with intermittent motion. They used impulse
momentum to define jump discontinuitiesin system velocity for large-scale systems. Khulief and Shabana [2,3] proposed a
method for dynamic analysis of large scal e constrained system of mixed rigid and flexible bodieswith variable structure. The
equations of motion were written in the Lagrangian formulation. The displacement field of the flexible components in the
system was defined using a finite set of coupled reference position and local elastic generalized coordinates. Chang and
Shabana [4] studied the dynamics of spatial flexible mechanical systems with changeable topology. They developed a
velocity transformation method that can be used to predict the jJump discontinuity in the joint variables. Rismantab-Sany and
Shabana [5] examined, both theoretically and numerically, the validity of the generalized impulse momentum approach in
modeling impact or collision in the constrained motion of deformable bodies. The generalized impul se momentum equations
and the kinematic constrain Jacobian matrix were used to predict the jump discontinuity in the velocity vector as well as the
joint reaction forces.

The generalized impulse momentum equations were also used by Gau and Shabana [6] to examine the propagation of
impact induced longitudinal waves in a constrained rotating rod. The analytical gudy presented by Gau and Shabana
demonstrated that the large rotation of the rod causes dispersion of the longitudinal harmonic waves.

In this study, asimple modd that consists of a rotating beam impacted transversely by arigid mass is used to examine
the effect of finite rotation and mass capture of mechanical systems . The simple model used in this study is shown in Figs. 1a
and 1b. The configuration of the system used in thisinvestigation isidentified using two different sets of modes. Thefirst set
describesthe system configuration of the system before the change in the system topol ogy, while the second set describesthe
configuration of the system after the topology change. A set of interface is defined and used guarantee the continuity as the
system topology changes.

II. Study Model

In this investigation the ssmple model shown in Figure 1 is used to examine the propagation of the impact-induced
transverse el astic waves in mechanical systemswith the variable kinematic structure. The system consists of aflexible beam,
which is connected to the ground by a pin joint at point O, and a rigid mass which moves with constant velocity V! before
impacting the beam transversely (Figure 1a).

The beam is assumed to have length | =1m, diameter D = 0.037m, massdensity r =7870kg/ m® , and the modules
of elasticity E=2." 10" N/m?. The mass of the beam is denoted as m' while that of the rigid massis m' . The beam is
assumed to rotate with a constant angular velocity w. At time t =0, the beam is subjected to a transverse impact by the
mass j which remains attached with the tip point of the beam as shown in Figure 1b. In this investigation, the collision is
assumed to occur first followed by the changein the system kinematic structure. Clearly, before the collision the vibration of
the beam is described using a set of vibration modes which are different from the ones that are used to describe the
deformation of the beam after the change in the system topol ogy.

Partial Differential Equation The vibration equations of the rotating beam shown in Figure 1acan be solved by using the
modal expansion method. If the effect of the longitudinal displacement on the transverse waveis neglected and if the angul ar
velocity of the beam referenceis assumed to be constant, the partial differential equation that governsthe bending vibration is
givenby
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where v is the transverse displacement, tis time, x is the axial coordinate. A is the cross sectional area, and | is the
second moment of area. In this case, the dispersion relationship takes the form

b =4 P*- w? (2)

where & is the frequency, P is the wave number, and j = % . If the angular velocity is equal to zero, the preceding
r

equation reduce to
b=, P? €)

which is the dispersion relationship obtained in the case of nonrotating beams [7]. Figure 2 shows the dispersion
relationship of Eq.2. It is clear from the results presented in this figure that as the angular velocity of the beam reference
increases, the frequency & decreases.
Using the method of separation variables, the transverse displacementv can be written

v(xt) = ké;f (900, O, (4)

where v(x;) is the transverse displacement, f, is the kth space-dependent eigenfunction, [q; ()], is the kthtime

dependent modal coordinate, and n is the number of the vibration modes. Before the change in the system topology, the
boundary conditions of the clamped-free beam are used and given by

_vst) _
V0 = =0 (5)

7v(,t) _ TPv(lt)

e e 0 (6)

Using these boundary conditions, the eigenfunction f, (x) is given by
f (X) =coP x- coshP,x -s ,(sinRx- sinhP,x) (7)
Theparameter P and s, can be numerically computed using the following formulas as

cosPlcoshP| +1=0 (8)

_ coR I +coshB|
sinB| +sinhR|
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Substituting Eqg.4 into Eq.1, and using the cantilever mode shapes of Eq.7, a finite dimensional model for the rotating
beam can be devel oped. The dynamic differential equations of the rotating beam can bewritten as

M, (@), + (K, - w*M,)(q), =0 (10)

where My and K, are, respectively, the mass and stiffness model coefficients for the Kth mode which can be evaluated
using the mode shape of Eq.7.

lll. Impact-induced Waves

If the geometry of the impacting surfaces and friction between the two impacting bodies are not considered, the
generalized impulse and the jump discontinuities in the system variables can be predicted using the algebraic generalized
impulse momentum equations. Furthermore, impact between the rigid mass and the rotating deformable beam is assumed to
occur in a very short interval such that the system configuration does not appreciably change. In this case the initia



conditionsfor the Eq.10 asthe result of the transverseimpact are defined as

[a; (0], =0 (12)

[a; (O)], =[Dg; 1, (12)

where Dqg, isthejump discontinuity in the velocity defined by Palas, Hsu, and Shabana[8].

The accuracy of thejump discontinuity in the vel ocities depends on the number of vibration modes. Figure 3 showsthe
jump discontinuity in the velocity along the beam length as afunction of the dimensionless coordinate x = x/I for different

number of modes.

V. Change in System Topology

After the change in the system kinematic structure, new sets of vibration modes must be used to describe the transverse
deformation of the beam with amass attached to its end. Therefore, after the topol ogy change, the transverse deformation of
the beam can bewritten as

T(x1) = é £, (00, ()], (13)

where (" ) refersto the system parameters after the change in the kinematic structure and the eigenfunctions f, (x) are

determined using thefollowing boundary conditions

v(0,t) =0 (14
WO _
- 0 (15)
2v(,1) _

e 0 (16)
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Using Eq.13 and applying the boundary conditions of Eq.14~17, lead to the definition of the eigenfunction f,(x) as

f.(X) =coP,x- coshP.x - &, (sinP.x- sinhP,x) (18)
where P, is determined using the frequency equation
f@&,) =cos, cosha, +a,gcosa, sinta, -a,gcosta,sina, +1=0 (29)

inwhich @, =Rl and §, iscalculated using the following formula

_ _ cosPl +coshP

S, = — = 20
¥ sinPl +sinhP| 20

where g =m'/m isthe mass ratio. The mode shapes of the system after the change in the system kinematic structure
must satisfy thefollowing orthogonality conditions
(21)

o AT ek miT O () =1 <
Q Kor k r _,:\ k=

0
M k=r

where M, isthe modal mass coefficient.
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Interface Condition In order to guarantee a smooth transition from one configuration space to another, a set of
compatibility or interface conditions must be applied. This set of conditions can be usad to define the jump discontinuitiesin
the system variables associated with the new configuration. The velocity of the beam after change in topology can be written
&

¥(x0) = & % (91T, O], 22)

k=1

where [, (0)], is the modal velocities after the topology change. Using the orthogonality conditions and Eq.22, the

modal velocities can bewrittenin termsof thevelocity ¥(x,0) as
1.0 .- —
[d: (O] = T QP Af  (V(x.Q)dx +m'f, (1)7(1,0)] (23)
k
It is assumed that the change in the system topology occurs immediately after impact. Unlike impact, the change in

topology is not accompanied by jump in the system velocities. Therefore, the velocities in the beam before and after the
change in the system topology remain unchanged. That is

¥(x0) =w(x0) =@ f (W[ a; (O], (24)
k=1
Substituting Eqg.24 into Eq.23, the jump in the modal variables associated with the new configuration can be defined as

[@ (0 =0 (25)

[ (0, = g AT (MI& T, (0a) Jx + m T (D[& T,(1)(Da, )1} (26

V. Transverse Wave Motion

Thedifferential equations of motion expressed in terms of the new modal coordinates of the system are
M (@), + (K, - w*M,)(@), =0 (27)
where Kk k=124 ,n arethe stiffness modal coefficients and are defined as

K, = Q')Elf_ 2(x)dx (28)

By using theinitial conditions of Eq.25 and 26, Equation 27 can be solved for the el astic coordinates as

[G; (t)], = D, sinb,t (29)
where
Ek — [GbeO)]k ‘ Ek - hﬁkz 1- sz (30

in which the dimensionlessrotation wave number 1, and the parameter h are defined as

w El
A, =—, h= |—=4j 31
“ hR?’ rA B D)

It is clear from Eq.30. If the angular velocity of the beam becomes large, it will cause negative stiffness coefficients



which lead to exponentially increasing unstable solution. This occurs for modek if w> hRz2.

The phase velocity of thekth mode can be expressed in terms of the wave number as

=hP,1- ;2 (32

Equation 32 shows that if w, or equivalently i, , isequal to zero, (C,), isequal to the phase velocity in the case of

(Cp)k =

o=

nonrotating beams. Figure 4 displays the phase vel ocity as afunction of the wave number for different values of the angular
velocity w. Itisclear from the results presented in thisfigure that the phase vel ocities of the waves decreases as the angular
velocity of the beam increases. It is clear from Eq.32 that the phase vel ocities depend only on the material and the dimension
of the beam aswell asthe finite rotation and the wave number.

After the change in the system topology, the group velocity of thekth mode can be written as
2hP,

(Co) =
o’k =

(33)

Figure 5 shows the group velocity as a function of the wave number for different values of the
angular velocity w.

VI. Summary and Conclusion

In this investigation, a computational procedure for the analysis of impact-induced transverse waves in mechanical
systems with variable kinematic structure is developed. A simple mechanical system that consists of a rotating beam
impacted transversely by arigid massis used to examine the effect of finite rotation and mass capture of mechanical systems .
The effects of the shear deformation and rotary inertia are neglected. The equations of motion of the rotating elastic beam are
developed using the principle of virtual work in dynamics. The jump discontinuity in the system velocities as the result of
impact is predicted using the generalized impulse momentum equations. The configuration of the system used in this
investigation is identified using two different sets of modes. The first set describes the system configuration of the system
before the change in the system topology, while the second set describes the configuration of the system after the topology
change. A set of interfaceis defined and used guarantee the continuity asthe system topology changes. These conditionsare
used to define the jump in the new set of modal velocities asthe result of impact. The dispersive nature of the impact-induced
transverse wavesis examined and it is shown that the phase vel ocities of the waves have different frequencies, which depend
nonlinearly on the wave number as well as the angular velocity of the beam. It was found that the change in the system
topology has more significant effects on the wave velocities of low frequency waves as compared to high frequency waves.
The analysis presented in this investigation also demonstrated that the change in the wave velocities as the result of the
changein the system topology is more significant in rotating beams as compared to nonrotating beams.

VII. Acknowledgement

The study was supported by the National Science Council of Taiwan, the Republic of China through the grant number
NSC 88-2212-E-197-002.

VIIl. Reference

1. Wehage, R. C. and Haug, E. J. (1982), “Dynamic Analysis of Mechanical Systems with Intermittent Motion,” ASME
Journal of Mechanical Design, Vol. 104, pp.778-784.

2. Khulief, Y. A. and A. A. Shabana (1986), “ Dynamic Analysis of Constrained System of Rigid and Flexible Bodies
with Intermittent Motion,” ASME Journal of Mechanism, Transmissions, and Automation in Design, Vol. 108, pp.
38-45.

59



10.

11.

12.

13.

14.

15.

Khulief, Y. A. and A. A. Shabana (1986), “Dynamic Analysis of Multibody Systems with Variable Kinematic
Structure,” ASME Journal of Mechanism, Transmissions, and Automation in Design, Vol. 108, pp. 167-175.

Chang, C. W. and Shabana, A. A. (1990), “ Spatial Dynamics of Deformable Multibody Systems with Variable
Kinematic Structure,” parts1 and 2, ASME Journal of Mechanical Design, VVol. 112, pp. 153-167.

Rismantab-Sany, J. and Shabana, A.A. (1990),“ On the Use of the Momentum Balance in the Impact Analysis of
Constrained Elastic System,” Journal of Sound and Vibration, Vol. 112, pp. 119-126.

Gau, W. H. and Shabana, A. A. (1992), “ Effect of Finite Rotation on the Propagation of Elastic Wavesin Constrained
Mechanical Systems,” ASME Journal of Mechanical Desgn, Vol. 114, pp. 384-393.

Whitham, G. B. (1974), Linear and Nonlinear Waves, Wiley, New York, U.SA.

Palas, H., Hsu, W.C., Shabana, A.A. (1992), “On the Use Momentum Balance and Assumed Modes Method in
Transverse Impact Problems,” ASME Journal of Vibration and Acoustics, Vol. 114, pp. 364-372.

Hsu, W. C. and Shabana, A. A. (1993), “Finite Element Analysis of Impact Induced Waves in Rotating Beams,”

Journal of Sound and Vibration, Vol. 168, pp. 335-369.

Huang, R. C., Haug, E. J.,, and Andrew, J. G. (1978), “ Sensitivity Analysis and Optimal Design of a Mechanical

System with Intermittent,” ASME Journal of Mechanical Design, Vol. 100, pp. 492-499.

Hunt, K. H., and Crossley, F. R. E. (1975), “ Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASVIE
Journal of Applied Mechanics, Vol. 53, pp. 1-4.

Kukreti, Feng, C. (1984), “ Dynamic Response Analysis of Linear Structural Systems Subject to Component Changes,”
Computers and Structures, Vol. 18, pp. 963-876.

Shabana, A. A., Gau, W. H. (1993), “ Propagation of Impact-Induced Longitudinal Wavesin Mechanical SystemsWith
Variable Kinematic Structure,” ASME Journal of Vibration and Acoustics, Vol. 115, ppl-8.

Shabana, A. A., Wehage, R. (1983), “A Coordinate Reduction Technique for Dynamic Analysis of Spatial Structures
with Large Angular Rotations,” Journal of Structural Mechanics, pp.401-431.

Yigit, A. S., Ulsoy, A. G., Scott, R. A. (1990), “Dynamics of Radially Rotating Beam with Impact, Part 1 and 2,”

ASME Journal of Vibration and Acoustics, Vol. 112, pp. 65-77.

91 09 17
91 10 16



= b
3
-t

‘@\ -

Fig 1a Rotating beam model before impact
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Fig 1b Rotating beam model after impact
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Fig 6 Transverse displacement of the mid-point x =0.5 for different angular velocities w(g=0.2)
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Fig 7 Transverse displacement of the mid-point x =0.5 for different mass ratio g (w=50)

0.1z

0.08 ~

~0.09 -

0.00

020
0.18-
0.12-
0.08-
0.04 -
0.00+
=0.04 +
-0.08
=0.12 4

-0.18 4

Mass ratio
y=02

..2.=04

-0.20







	05cg91t
	05eg91t
	05ct91t

