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Abstract

h
The cross section integral .[0 A(S.) dzis studied for finding the

volume of a solid, whose cross sections are bounded by Jordan (simple

closed) curves (X, ) =Y (¢) instead of functions ¥ = f(x),

X =g(»). Although the method is elementary, it gives rise to some

interesting problems.
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1. Introduction
Consider the theorem (See [1]): “Let S be a bounded Jordan
measurable 3-dimensional set lying between two planes z=0andz = A
. For eachz €[0,4], let Sz be the cross section of S in the plane taken

perpendicular to z-axis at z. Suppose for eachz € [0,/], Sz is also Jordan

measurable and let A(S, ) be the area of S, then the Riemann integral

h h
jo A(S.)dz exists, and the volume V(S) of S is given by L A(S.)d=" . In

most textbooks on advanced calculus, the proof involves the multiple integrals
and the solid S is of the

form {(x,y,Z)\a Sx<bhp(x)Sysy(x), 0, y)szs< LP(x,y)}. The purpose of this

paper is to prove the formula without the above assumption on S, but instead,

with the cross sections of the solid being the regions bounded by simple closed
curves. Thus, it is not surprising that some extra conditions will be added in

order to prove it.

2. Curves

Recall that a subset S of R" has (n-dimensional) content zero if for

every ¢ >0 there is a finite cover {U] U, }of S consisting of closed
n

rectangles such thath(Ui) <€, where V(U) is the n-dimensional
i=1

volume of U which is defined as (b, —a,)---(b,—a,) if U=

{(xl,- . ~xn)|a1 <x,<b,a,<x < bn}
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We list some properties of curves:

Theorem 1 (See [2])
(Jordan Curve Theorem) Let ¥ be a simple closed curve in the plane R’, then

R* - Y has exactly two connected components whose common boundary isY .

Lemma 1 (See [3])

Let Y (#)=(x(¢) ¥(¢) be a plane curve, ¢ €[a,b]. If x(¢)or ¥(¢)has a

bounded derivative on[a@,b], thenY has 2-dimensional content zero.

Lemma 2(See [4])

Let Y(£)=(x(¢) y(t) be a rectifiable plane curve ? €[a,b]. Then Y has

2-dimensional content zero.

3. The Solid

To describe a solid, we need the following hypothesis:

Hypothesis 1

Let F(z,t) be a continuous mapping from[0,/] « [0,1] into R’

oF oF
such thatgandg are continuous ony0, 4] « [0,1] and let

Y.(t)=(x(t) ¥,(t) =F(z,t)be a simple closed C’ curve for every

z€[0,4].y.(0)=v.(D).

S is a solid lying between two planes z = 0 and z = /i such that P(Sz), the

projection of Sz onto x-y plane , is just the region bounded by ,, for every

ze[0,h].
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Theorem 2

The mapping z — A(S ) is continuous on[0, 4] .

We divide the proof into 3 steps:

Step 1:

Since the mapping[0,/4] x [0,]] -5 R2given by(z,¢) — Y.(¢)is

continuous, for any number € > 0, then we can always find a numberd > 0

such that for any z,,z, €[0,A]and ¢,t, €[0,1], |(Zpt1) - (Zzatz)| <9

implies [y (6) -, (1,)] <& )

Define the length of Y.25 A(y,)~Sup ;hz(ti) _Yz(ti—l )| where the

supremum is taken over all partitions 0 = ¢, <f, <---<t¢, =1.

Step 2:

Let E((x,y),g) be a closed disk of radius ¢ and center (x, ) . For a fixed z,,
( L)_J/E((x,y),s)is Jordan measurable and A( | JB((x,),¢))=2¢ A(y.,). )
T ez,

Proof of (1):

(i) Since Y., (!) is a C?curve, A(YZO) <. Let)tzo ($)be the

reparametrization of Y by arc length. We claim that

UE((A‘,J»‘), g)= {/L_,O (s)+1&(¥'(s),—x" (5‘))‘0 <s < A(;/_,D ),—1<1< 1} (2)

(V)T

Indeed, the = part of (2) is obvious. For the < part, first pick a point P in
UE((x,y),g). It follows from the compactness of Y. and continuity of
(¥, 0)Er,

distance that we can find a point Q in ¥ such that the distance between P

and Q is a minimum. Furthermore, the line PQ is perpendicular to” ; , which
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can be seen by using (ve)'=2(vev'). This completes the & part of (2).
(1) The area of the set
{/1:0 (s)+ fg(y'(s),—.\"(s))‘o <5< A(}/:0 ),—1<t < l} is just the difference of the

areas of the two regions bounded by the two simple closed C! curves s —

/1:0 (s) £ £(»'(s),—x"'(s)) if & is small enough. Hence, by Green's theorem,

AC UB((x,).6))=

(x,0)€72,

J‘OAW:“ )(x +e")(V'—ax")ds — J‘OA(KO )(x —&")(V'+ax")ds

26 () (5) - (0 () s

— ZSIOA(:/:O )(x(s)x"(s) + (x'(s))z ~1)ds

= ‘— 26" (x(s) ()~ Dy

=2e A(7.,)-
This proves (1).
Step 3:

Fix 7, , and let € > 0. By continuity of the mapping (z,¢) — Y.(?),

we can find a § > () such that "Yz(t) Y., (t)‘ <€
whenever|Z - Zo| <9 . Thus, for such z, the set {}/:(l)|0 <t< 1} is

contained in UE((X, ¥),&), which is the union of all closed disks of radius
(x.3)€7
€ centered at ( X, y) over the curveY .

Since A( [JB((x,),£))=2¢A(y., ), it follows that

()7,

4(5.) - 4(S.)

<2eA(y.,) whenever |Z - Zo| <d .
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This completes the proof of Theorem 2.

Theorem 3
If a solid S satisfies hypothesis 1 and its cross sections are increasing in the

sense that P(S,) C P(S,) wheneverQ< g < b <}, then the volume
h

V(S) of Sis given byj‘0 A(S.)dz .

Proof: Let0 =z, <z, <z, <--- <z, = h be a regular partition of[0, 4] . It

follows thatZA(S_,'_1 YAz, < TV(S) < ZA(S:, )Az, . Lettingn — o0, we are

i=1 i=1
done.

Theorem 4

h
If a solid S satisfies hypothesis 1, then /(S =J‘0 A(S.)dz
Proof: Step 1:

Since [0,/4]%[0,1] is compact, [ is uniformly continuous. For anyg > (),
there exists a numberd > 0 such that for every
a-b €[0,h]and 1,1, €[0,1], we have [(@,1,) = (b,t,)| <8 implying

- letU=2, <2, <2, <---<Z = eapartltlono
a(tl) Yb(tZ) <€.L O 0 1 2 n hb iti f

[0,A] with norm < § . Then Y, C UE((\, V),&) for any z €[z, ,z,]
(x.¥)er.,

. Define M;= UP(SZ) , m;= ﬂP(SZ). Then m; c P(Sz) = M; for

z€lz;,2;] z€lz;,2;]

anyz €[z;_,,2;], thus 4(m;)< A(S2) < Z( M;) where Aand A are

Jordan outer and inner areas respectively.
Step 2:
oF

Since ot is continuous on[0,4] x [0,1], the mapping z — J‘;‘y:'(l‘)‘dr
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is continuous on[0,4]. It follows that SUp A(Y)) <0 Let sup A(Y)
z€[0,h] z€[0,h]

:=L. From the fact that 7.< B((x.7).8) for everyz €[z, |,2,], and

(xer,

UE((A‘, v),&) is contained in the region between two non-intersecting

(x.y)ey,

simple closed curves, we obtain that 4 (M;)- 4 (m;)< 28A(Yzi )<2e L.
Since > A(m)Az, £ V(S)< > AM,)Az,, and

i=1 =1
> A(m)Az, <3 AS. YAz, <Y AM,)Az,, 1t follows that

i=1 i=1 i=1

(Z A(S. )Az,) =V (S)|<2¢hL. This completes the proof of Theorem 4.

i=l

Remarks:

(1) The solid is Jordan measurable since its boundary is a union of a C'

mapping image of [0,4] % [0,1] and two plane regions bounded by C’

curves.
(2) Let F(Z,l) be a continuous mapping from[O,/’l] X [0,1] into R%.
For everyz €[0,A],y_(¢) = (x_(¢) y,(t) =F(z,t)is a simple closed
piecewise C1 curve.

(i) In general, the mapping[0,/4] —s R given by z — A(Y,) may not be
continuous as can seen in the diagram below: a sequence of functions with a

constant arc-length converges pointwise to a function whose length is smaller.
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(ii) Although Y, is rectifiable for every z€[0,A], the set

1 may still be unbounded. Indeed, for example, if Y ()
sin2mnt

T) and

1
Y, (¢)=(2,0) fort 6[0,5] then A(Yl)>2\/;—>00 as 11— oo .

and v, (f) 2re simple closed curves such that

4. Some Interesting Problems

(1 LetE(x,S) = {y € R2||x — y| < 5}. If a set S in R” has content zero, then

lim(A(| |B(x,8)) _
lim(AJBx8)) -
Proof: Let€ >0 be given and S be contained in a union of n rectangles Ri,Ro,-

-,R. such that z (R ) 9 If m is the minimum of the 2n side lengths of

the n rectangles and § < m , then we claim that A(UB (x,5) <€ . Indeed,

xe§

let Si=SRi and pick any point x; in Si, thenE(xi,S) is contained in a

rectangle R, whose side lengths are three times of those of Ri (See diagram

below). Hence, E(x[,ﬁ) CR, . Since the choice of x; in S; is arbitrary,

we have UE(X d)c R, and UE(X d)c LJRl , which implies

xeS; n XeS§ n

A JB(x,8) < A(UR )< ZA(R ) 9ZA(R ) <g

xe§
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(2) Assume that S is any bounded set in R’ and § >0. Is UE(}C,S ) a Jordan
measurable set? xes
Remark: If § is replace by Sx , the value of which depends on x, then

UE(A‘, 0,) is not always a Jordan measurable set. For example,
Xes§
let S={x1, Xy, Xy, } be the rational points in the interior of the unit square

[0,1]2, then for each xi in S, we can find a disk B(xiaSXi) contained in

the interior of [0,1]2 such that ZA(B (xi’Sxi ) <1, Since the boundary of
i=1

UE(X d,) is [0, 1]2 — interior of UB (x,0 ). It follows that the measure

xeS xeSs

of the boundary of UB(x d ) is positive, which deduces that UB(X d.)
xes xeS§

is not a Jordan measurable set.

(3) Let Y5:[0,1] [0,1]2 be a closed curve (See diagram 1) such that

-1 i 2
Y, (f) passes through square i for te[ yE 43], and ¥4:[0,1] _ [0,1]

(See diagram 2) be a closed curve such that Y, (#) passes through square i for

te[i —, 4] Let Y, (¢) be defined similarly. It follows that Y., (t) —>Y (@)
4%
as n— o, but Y (#) is not a simple closed curve (Y (0)= Y(—) v (D),

'Y( ) Y( )k234———) and the image of Y is [0,1]".
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22 21 20 17 16 13 12 11
23 24 19 18 15 14 9 10
26 25 30 31 2 3 8 7
27 28 20 32 1 4 5 6
38 37 36 33 64 61 60 59
39 40 35 34 63 62 57 58
42 41 46 47 50 51 56 55
43 44 45 48 49 52 53 54

(Diagram 1)
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86 85 84 81 80 79 66 65 64 63 50 49 48 45 44 43

87 88 83 82 77 78 67 68 61 62 51 52 47 46 41 42

920 89 94 95 76 73 72 69 60 57 56 53 34 35 40 39

91 92 93 96 75 74 71 70 59 58 55 54 33 36 37 38

102 | 101 | 100 | 97 | 118 | 119 | 122 | 123 6 7 10 11 32 29 28 27

103 | 104 | 99 98 | 117 | 120 | 121 | 124 5 8 9 12 31 30 25 26

106 | 105 | 110 | 111 | 116 | 115 1262125 4 3 14 13 18 19 24 23

107 | 108 | 109 | 112 | 113 | 114 | 127 | 128 1 2 15 16 17 20 21 22

150 | 149 | 148 | 145 | 144 | 143 | 130 | 129 | 256 | 255 | 242 | 241 | 240 | 237 | 236 | 235

151 | 152 | 147 | 146 | 141 | 142 | 131 { 132 | 253 | 254 | 243 | 244 | 239 | 238 | 233 | 234

154 | 153 | 158 | 159 | 140 | 137 | 136 | 133 | 252 | 249 | 248 | 245 | 226 | 227 | 232 | 231

155 | 156 | 157 | 160 | 139 [ 138 | 135 | 134 | 251 | 250 | 247 | 246 | 225 | 228 | 229 | 230

166 | 165 | 164 | 161 | 182 | 183 | 186 | 187 | 198 [ 199 | 202 | 203 | 224 | 221 | 220 | 219

167 | 168 | 163 | 162 | 181 | 184 | 185 | 188 | 197 | 200 | 201 | 204 | 223 | 222 | 217 | 218

170 | 169 | 174 | 175 | 180 | 179 | 190 | 189 | 196 [ 195 | 206 | 205 | 210 | 211 | 216 | 215

170 | 172 | 173 | 176 | 177 [ 178 | 191 | 192 | 193 | 194 | 207 | 208 | 209 | 212 | 213 | 214

(Diagram 2)
(4) Is it true that a simple closed curve in R* has content zero? ~ The answer

is no. See [5].
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