第 1 頁，共 2 頁
一，Consider a 1.00 mole sample of hydrogen， $\mathbf{H}_{\mathbf{2}}$ ，that has a pressure of $\mathbf{2 . 0 0} \mathbf{~ a t m}$ and a volume of 5.00 L ．Predict the temperature of this sample of gas use（a）．the ideal gas law（ $2 \%$ ）and（b）．the van der Waals equation（where $a=0.244 \mathrm{~atm} \cdot \mathrm{~L}^{2} / \mathrm{mol}^{2}, \mathrm{~b}=$ $0.0266 \mathrm{~L} / \mathrm{mol}$ ）（4\％）（c）．the Boyle temperature of hydrogen？（4\％）

二，Determine the difference between $\triangle H$ and $\triangle \mathbf{U}$ ，for 12.2 g Benzoic acid burned in the presence of excess oxygen at $25^{\circ} \mathrm{C}$ for the following reaction：（ $\mathbf{1 0 \%}$ ）
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s})+15 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 14 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell)$
三 ，The accompanying diagram represents a reversible Carnot cycle for an ideal gas：（a）． What is the thermodynamic efficiency of the engine？（4\％）（b）．How much heat is absorbed at 500 K ？（ $4 \%$ ）（c）．How much heat is rejected at 200 K ？（4\％）（d）．In order for the engine to perform 1.00 kJ of work，how much heat must be absorbed？（3\％）


四，10．0 grams of helium behaved ideally is compressed isothermally and reversibly at $100.0{ }^{\circ} \mathrm{C}$ from 2.00 atm to 10.0 atm ．Calculate $q(3 \%)$ and $w(3 \%)$ and each of the thermodynamic quantities $\triangle \mathbf{U}(\mathbf{1 \%}), \triangle H(\mathbf{1 \%}), \triangle \mathbf{G}(\mathbf{3 \%}), \triangle \mathbf{A} \mathbf{( 2 \% )}$ ，and $\triangle S$ （2\％）？

五，The $\triangle G^{0}$ for the following reaction is $+3.40 \mathrm{~kJ} / \mathrm{mol}: \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathrm{I}_{\mathbf{2}}(\mathrm{s}) \rightleftarrows \mathbf{2 H I}(\mathrm{g})$ （a）．Calculate the equilibrium constant for the reaction？（5\％）（b）．If the partial pressure of $\mathbf{H}_{\mathbf{2}}$ at equilibrium is $\mathbf{0 . 2 0}$ bar，please calculate the partial pressure of hydrogen iodide in the mixture ？（5\％） $\mathbf{P}^{0}=1$ bar．

六，What pressure is necessary to change the boiling point of water from its 1.000 atm value of $100^{\circ} \mathrm{C}(\mathbf{3 7 3} \mathrm{K})$ to $97^{\circ} \mathrm{C}(\mathbf{3 7 0} \mathrm{K}) ?(\mathbf{1 0 \%})$ The heat of vaporization of water is $40.7 \mathrm{~kJ} / \mathrm{mol}$ ．The density of water at $100^{\circ} \mathrm{C} 0.985 \mathrm{~g} / \mathrm{mL}$ ，and the density of steam is $0.5983 \mathrm{~g} / \mathrm{L}$ ．You will have to use the relationship $101.32 \mathrm{~J}=1 \mathrm{~L}$－atm．

七，Calculate $\Delta H_{\text {mix }}(\mathbf{2 \%}), \Delta U_{\text {mix }}(\mathbf{2 \%}), \Delta G_{\text {mix }}(\mathbf{3 \%}), \Delta S_{\text {mix }}(\mathbf{3 \%})$ for a system that mixes $\mathbf{1 . 0 0}$
mole of toluene and 3.00 mole of benzene？Assume ideal behavior and 298K．

八，For the reaction：
$3 \mathrm{Ag}(s)+\mathrm{NO}_{3}^{-}(a q)+4 \mathrm{H}^{+}(a q) \longrightarrow 3 \mathrm{Ag}^{+}(a q)+\mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{o}=0.165 \mathrm{~V}$
Calculate（a）．$\Delta G^{\circ}(5 \%)$ and（b）． $\mathrm{K}(5 \%)$ at $25^{\circ} \mathrm{C}$ ．

九，Consider the first－order decomposition of $A$ ．The rate constant doubles when the temperature increases from $15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ and the rate constant for the decomposition at $40^{\circ} \mathrm{C}$ is $0.0125 s^{-1}$ ．Calculate（a）．What is the activation energy for the decomposition？（3\％）（b）．What is the half－life of A at $78^{\circ} \mathrm{C}$ ？（3\％）（c）．What is the rate of decomposition of a 0.200 M solution of $A$ at at $78^{\circ} \mathrm{C}$ ？（ $2 \%$ ）（d）．At what temperature will the rate of decomposition of $\mathbf{0 . 1 6 5} \mathbf{M}$ be $\mathbf{0 . 1 2 4} \mathrm{mol} / \mathrm{L} \cdot \mathrm{s} \boldsymbol{?}(\mathbf{2 \%})$

