1. The diode cut-in voltage is $V\gamma = 0.7$ V in the circuits shown in Figure 1. Find the diode current I_D and diode voltage V_D . (10%)

- 2. Consider the circuit in Figure 2. Assume the diode cut-in voltage is $V_{\gamma} = 0$ V. Sketch v_D versus time, v_o versus time and v_o versus v_i . (15%)
- 3 For the circuit in Figure 3, the transistor parameters are $V_{BE(on)} = 0.7 \text{ V}$, $\beta = 180$, and $V_A = \infty$. (a) Determine the *Q*-point values. (b) Find the small-signal parameters g_m , \mathbf{r}_{π} and \mathbf{r}_0 . (c) Find the small-signal voltage gain $A_v = v_o/v_s$. (20%)

4. For the differential amplifier in Figure 4, the transistor parameters are $k_{n1} = k_{n2} = 2 \text{ mA/V}^2$, $k_{n3} = 1 \text{ mA/V}^2$, $V_{th1} = V_{th2} = 2V$, $V_{th3} = 1V$, and $\lambda_1 = \lambda_2 = \lambda_3 = 0$. (a) Determine I_{D1} , I_{D2} and I_{D3} . (b) Determine the differential-mode voltage gain A_d . (20%)

- 九十九學年度研究所碩士班考試入學
 電機工程學系碩士班
 電子學考科
 第2頁,共2頁
- 5. Consider the oscillator in Figure 5. Find the values of R_1 and R_2 that will produce sustained oscillations at 10Hz. (10%)

- 6 Consider the circuit shown in Figure 6. The transistor Q2 is equivalent to two identical transistors in parallel, each of which is matched to Q1. Assume the transistor parameters are $V_{BE(on)} = 0.7 \text{ V}$, $\beta = 60$, and $V_A = \infty$, and assume the bias voltage is V + = 2.5 V. Design the R1 of circuit such that $I_O = 0.50 \text{ mA}$ and determine the value of I_{REF} . (10%)
- 7. The op-amp in the noninverting amplifier configuration in Figure 7 has a slew rate of $1 \text{ V}/\mu\text{s}$. Sketch the output voltage versus time for each of the three inputs shown. The op-amp is biased at $\pm 10 \text{ V}$. (15%)

Figure 7