1．Single Choice Problems（each sub－problem： $\mathbf{5}$ points）

（1）Let $n \in \aleph, x \in \mathfrak{R}$ and $y \in \Re$ ．Then the $(r+1)^{\text {th }}$ item of polynomial $(x+y)^{n}$（arranged in the descending order of the powers of x ）can be expressed as？
（A）$\binom{n}{r} x^{n-r-1} y^{r+1}$
（B）$\binom{n}{r+1} x^{n-r} y^{r}$
（C）$\binom{n}{r+1} x^{n-r-1} y^{r+1}$
（D）$\binom{n}{r} x^{n-r} y^{r}$
（2）Let U, V be arbitrary sets，then based on the $D e$ Morgan laws we have $(U \cap V)^{\prime}=$ ？
（A）$U^{\prime} \cup V^{\prime}$
（B）$U^{\prime} \cap V^{\prime}$
（C）$U \cup V^{\prime}$
（D）$U^{\prime} \cap V$
（3）Let n be an integer represented in base 10 as a sequence of t decimal digitals，i．e．，$d_{1} d_{2}$ $d_{3} \ldots d_{t}$ ．Then n mod 9 can be expressed as？
（A）$\left(\sum_{i=1}^{t} d_{i}\right) \bmod 9$
（B）$\left(\sum_{i=1}^{t} d_{i}\right) \bmod 3$
（C）$\left(\prod_{i=1}^{t} d_{i}\right) \bmod 9$
（D）$\left(\prod_{i=1}^{t} d_{i}\right) \bmod 3$
（4）Assume that n is an exact power of 2，which is the solution of the recurrence relation shown below？
$\Gamma(n)=\left\{\begin{array}{cl}2 & \text { if } n=2 \\ 2 \Gamma(n / 2)+n & \text { if } n=2^{k}, \forall k>1\end{array}\right.$
（A）$\Gamma(n)=2 \lg n$
（B）$\Gamma(n)=n \lg n$
（C）$\Gamma(n)=n \lg \lg n$
（D）$\Gamma(n)=n \lg \lg \lg n$
（5）When use a binary search algorithm to find an element in an N－element list，how many elements in the list will be examined before the algorithm returns a failure in finding the element？
（A）N
（B） $\log N$
（C）$N / 2$
（D） $\log (N / 2)$
（6）Let $k \in \mathbb{N}, n \in \mathbb{N}$ and $r \in \mathfrak{R}$ ．Then which summation formula below is wrong？
（A）$\sum_{k=0}^{n} a r^{k}=\frac{a r^{n+1}-a}{r-1}, r>1$
（B）$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
（C）$\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$
（D）None

2．The edge connectivity of an undirected graph denotes the minimum number k of edges that must be removed to disconnect the graph．For example，the edge connectivity of a tree is 1 ． Accordingly，the edge connectivity of a cyclic chain of vertices is \qquad ．（7 points）

3．Visiting the tree below in postorder gives the result A \qquad （18 points）

4．If we flip a coin，there is probability p that it comes up heads and probability q that it comes up tails，where $p+q=1.0$ ；i．e．，this process have just two outcomes．If we toss the coin n times and assume that different coin tosses are always independent．Then the chance of obtaining exactly k tails in n tosses is \qquad ．（15 points）

5．The 8 －bit two＇s complement notation of（7）$)_{10}$ is \qquad （10 points）

6．The harmonic numbers $H_{j}, j=1,2,3, \ldots$ are defined as follows：
$H_{j}=1+1 / 2+1 / 3+\ldots+1 / j$ ．
Show that $H_{2^{n}} \geq 1+\frac{n}{2}$ ，where n is a nonnegative integer．（10 points）

7．Given an undirected graph $G=(V, E)$ with $|V|$ nodes and $|E|$ edges．To make sure that G is connected，the value of $|E|$ is at least \qquad ．（10 points）

