1．A liquid has a viscosity of $0.005 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$ and a density of $850 \mathrm{~kg} / \mathrm{m}^{3}$ ．Calculate the kinematic viscosity in（a）SI and（b）USC units and（c）the viscosity in USC units．（20\％）

2．What is the absolute pressure in drum A at position a ？（20\％）

3．A block weighting 1 kN and having dimensions 200 mm on an edge is allowed to slide down an incline on a film of oil having a thickness of 0.005 mm ．If we use a linear velocity profile in the oil，what is the terminal speed of the block？The viscosity of the oil is 7×10^{-2} poise． $\left(\sin 20^{\circ}=0.34 ; \cos 20^{\circ}=0.94 ; \tan 20^{\circ}=0.36\right)(20 \%)$

4．Water with a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$ flow through a vertical venturimeter as shown．A pressure gage is connected across two taps in the pipe（1）and the throat（2）．The area ratio $\mathrm{A}_{\text {throat }} / \mathrm{A}_{\text {pipe }}$ is 0.5 ．The velocity in the pipe is $10 \mathrm{~m} / \mathrm{s}$ ．Find the pressure difference recorded by the pressure gage．Assume the flow has a uniform velocity distribution and that viscous effects are not important．（20\％）

5．It is known that the pressure developed by a centrifugal pump，Δp ，is a function of the diameter D of the impeller，the speed of rotation n ，the discharge Q ，and the fluid density ρ ． D, n and ρ ，three repeating variables are selected．Please by dimensional analysis，determine the π－groups relating these variables．（ 20% ）

