九十六學年度研究所碩士班考試入學
 機械與機電工程學系碩士班
 工程數學考科

第 1 頁，共 1 頁
1．Evaluating line integral $\int_{c} y z d x+z x d y+x y d z$ where the integral path，
C：$\frac{x-1}{2}=\frac{y-3}{6}=\frac{z-2}{4}$ ，indicates from $(0,0,0) \rightarrow(1,3,2)$
2．Consider a system in state variable form：$\dot{X}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 2 & 0 & 1 \\ -k & -3 & -2\end{array}\right] \mathrm{X}+\left[\begin{array}{l}-1 \\ 0 \\ 1\end{array}\right] u$ ，

$$
\mathrm{Y}=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] X
$$

Find the range of k where the system is stable．

3．Evaluate $\iint_{S} \vec{F} \cdot \mathrm{~d} \sigma$ where $\vec{F}=x y \vec{i}+x z \vec{j}+(1-z-y z) \vec{k} ; \mathrm{S}$ is the lateral surface of the paraboloid $\mathrm{z}=1-\mathrm{x}^{2}-\mathrm{y}^{2}$ for which $\mathrm{z} \geqq 0$

4．Solve the equation $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+10 y=0$ ，with the initial conditions $y(0)=4, \frac{d y}{d t}(0)=1$ ．

5．Write the following function using unit step functions and find its Laplace transform．

$$
f(t)= \begin{cases}2 & I f 0<t<1 \\ \frac{t^{2}}{2} & I f 1<t<\frac{\pi}{2} \\ \cos t & \text { ift }>\frac{\pi}{2}\end{cases}
$$

