九十六學年度研究所碩士班考試入學 電子工程學系碩士班 電子學考科

- (a) For a voltage amplifier, what are its ideal input resistance and ideal output resistance? (5%)
 - (b) For the ideal diode circuit shown in the Fig. 1, find current *I*. Assume R = 1K Ω . (5%)
 - (c) Describe the reason that causes the potential barrier in the depletion region of pn junction. (5%)
 - (d) Please draw a figure of drain current i_D vs. v_{GS} for both Enhancement mode NMOS and Depletion mode NMOS. (5%)
 - (e) Compared with common-gate amplifier and common-drain amplifier, what's the main reason that limits the high frequency response of the common-source amplifier? (5%)
 - (f) For the circuit shown in Fig. 2, if $R_2 = 2R_1$ and $v_I = -2V$, indicate the voltages of v_O and v_A . Assume that the diodes have 0.7V voltage drops when conducting. (5%)
 - (g) The phase of a negative feedback amplifier is -150° while its loop gain is 0 dB. Please indicate the amplifier's phase margin. (5%)
 - (h) Describe the Barkhausen criterion of oscillation. (5%)
 - (i) Please compare the transconductance g_m , output resistance r_o , intrinsic voltage gain A_0 , input resistance R_i and power dissipation P_{diss} between BJT and FET. (5%)
 - (j) The circuit shown in Fig. 3 is a variation of class AB output stage. Please describe the purpose of Q_5 and R_{E1} . (5%)

第1頁,共2頁

九十六學年度研究所碩士班考試入學 電子工程學系碩士班 電子學考科

- 3. Let the circuit shown in Fig. 5 under that the FET has $V_t = 1$ V, $k_n'(W/L) = 1$ mA/V², $V_{DD} = 5$ V, and $R_D = 8$ K Ω .
 - (a) What are the v_I and v_O values while the transistor operates just from cutoff region to saturation region? (5%)
 - (b) What are the v_I and v_O values while the transistor just operates from saturation region to triode region? (5%)
- 4. The common-base amplifier shown in Fig. 6 under the following condition: I = 1mA, $\alpha \approx 1$, $R_{sig} = 5$ K Ω , $R_C = R_L$ =10K Ω . If the coupling capacitors C_1 and C_2 are ideal infinite.
 - (a) Plot the small signal equivalent circuit for the circuit using T model. (5%)
 - (b) Find voltage gain $A_v = v_o/v_i$, and (5%)
 - (c) $R_{in.}$ (5%)
 - (d) Describe the significant advantage and disadvantage of common-base amplifier in applications. (5%)
- 5. The circuit shown in Fig. 7 is a waveform generator with ideal op amps.
 - (a) Please plot the waveforms of $v_1(t)$ and $v_2(t)$. (5%)
 - (b) If the op amps have output saturation voltages of ± 10 V and if a capacitor $C = 0.01 \mu$ F and a resistor $R_1 = 1$ K Ω are used, find the values of R and R_2 such that the waveform v_1 has frequency 1KHz and 10V peak-to-peak amplitude. (10%)

Fig. 7

第2頁,共2頁