Part I 選擇題（ 30% ，共六題，每題5分，答錯倒扣1分，作答時請在答案卷寫上題號後直接填入答案）

1．If the solution to the initial－value problem $\left\{\begin{aligned} y^{\prime \prime}-4 y^{\prime}+13 y & =0 \\ y(0) & =4 \text { ，} \\ y(0) & =-1 .\end{aligned}\right.$ is presented as $y(x)=e^{c x}(\alpha \cos a x+\beta \sin b x)$ and both a and b are positive，then which is incorrect？（A）$a=b$（B） $a=2$（C）$\alpha=4$（D）$\beta=-3$（E）$c=2$ ．

2．Among the following equations，which one is not exact differential？
（A）$\left(y^{2}-1\right) d x+(2 x y-\sin y) d y=0$
（B）$y^{2} d x-\left(2+3 y^{2}-2 x y\right) d y=0$
（C）$(1+\ln x y) d x+\left(1+x / y^{2}\right) d y=0$
（D）$(2 x+3 y-2) d x+(3 x-4 y+6) d y=0$
（E）$\left(3 x^{2}+y \cos x\right) d x+\left(\sin x-4 y^{3}\right) d y=0$ ．

3．The integral $\int_{(0,0)}^{(1,1)}\left[\left(6 x y^{2}-y^{3}\right) d x+\left(6 x^{2} y-3 x y^{2}\right) d y\right]=(\mathrm{A}) 0$（B） 2 （C）-2 （D） 22 （E）-22 ．

4．Which of the following sets of vectors is linear dependent？
（A）$(1,0),(0,1)$
（B）$(1,2)^{T},(3,4)^{T}$
（C）$(1,2,3),(4,5,6),(7,8,9)$
（D）$p_{1}(x)=x^{2}+x-1, \quad p_{2}(x)=x^{2}-x+1, \quad p_{1}(x)=-x^{2}+x+1$
（E）$\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right],\left[\begin{array}{ll}5 & 8 \\ 6 & 7\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ ．

5．Which one of the following is not an equivalent statement for an $n \times n$ Nonsingular Matrix \mathbf{A} ？（A）rows of \mathbf{A} are linear dependent $(B) \mathbf{A x}=\mathbf{b}$ has a unique solution for every right side \mathbf{b}（C） $\operatorname{det}(\mathbf{A}) \neq 0$（D） $\operatorname{Rank}(\mathbf{A})=n(\mathrm{E}) \quad \mathbf{A}$ has an inverse．

6．Given that $\mathbf{A}=\left[\begin{array}{cc}9 & -1 \\ 2 & 1\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}3 & -3 \\ 2 & 3\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ccc}-1 & 0 & -2 \\ 3 & -2 & 0 \\ 4 & 2 & 7\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -5 & 7 & 3 & 0 \\ 11 & 4 & -9 & 4\end{array}\right]$ ，and $\mathbf{E}=\mathbf{A B}$ ，
which one owns the largest determinant？（A）A（B）B（C）C（D）D（E）E．

Part II 計算題（70\％，共五題，每題14分）

1．Let $D y=\frac{d y}{d x}$ and $D^{2} y=\frac{d^{2} y}{d x^{2}}$ ．Solve the differential equation $\left(D^{2}+2 D+4\right) y=4 x^{2}+6 e^{-x}-\sin x$ ．
2．Let $\mathbf{A}=\left[\begin{array}{ccc}5 & -8 & -1 \\ 4 & -7 & -4 \\ 0 & 0 & 4\end{array}\right]$ ．（i）Find the eigenvalues and eigenvectors of \mathbf{A} ．（ii）Find a complete solution of the system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\mathbf{A}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ ．

3．Let $f(t)$ is a periodic function whose definition in one period is

$$
f(t)=\left\{\begin{array}{rl}
\sin t, & 0 \leq t<\pi \\
0, & \pi \leq t<2 \pi
\end{array}, \quad 0 \leq t<2 \pi .\right.
$$

（i）Find the Laplace transform of $f(t)$ ，namely $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$ ．
（ii）Find the Fourier series of $f(t)$ such that $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi t}{L}+b_{n} \sin \frac{n \pi t}{L}\right), \quad L=\pi$ ．
（iii）Let the Fourier series be reformulated as $f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \cdot n \cdot t}$ ．What is the relationships of c_{n} to a_{n} and b_{n} ？

4．$\quad B=\{(1,0),(0,1)\}$ and $B^{\prime}=\{(1,-1),(-1,2)\}$ are two bases of R^{2} ，and $T(x, y)=(3 x, x-y)$ is a linear operator on R^{2} ．（i）Find \mathbf{P} ，the transition matrix from B^{\prime} to B ．（ii）Determine the transformation matrix of T with respect to B ．（iii）Use a similarity transformation to find the matrix of T with respect to B^{\prime} ．（iv） Suppose the coordinate vector of \mathbf{u} with respect to B is $\mathbf{a}=(3,4)$ ．Find the coordinate vector with respect to B^{\prime} ．（v）Let the solutions of Parts（ii），（iii），（iv）be $\mathbf{A}, \mathbf{A}^{\prime}$ ，and \mathbf{a}^{\prime} ，respectively．What is the relationship between $\mathbf{A a}$ and $\mathbf{A}^{\prime} \mathbf{a}^{\prime}$ ？

5． $\mathbf{v}_{1}=(1,-2,2)$ and $\mathbf{v}_{2}=(0,3,-6)$ are linearly independent in R^{3} ．These two vectors form a basis for a two－dimensional subspace W of R^{3} ．（i）Use the Gram－Schmidt process to construct an orthogonal set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ ．（ii）Given that $\mathbf{x}=(9,0,9)$ ，decompose \mathbf{x} into the sum of a vector that lies in W and a vector orthogonal to W ．

