Discrete Mathematics and Linear Algebra

1． $\mathbf{(1 0 \%)}$ ）Show that among $n+1$ arbitrarily chosen integers，there are two whose difference is divisible by n ．

2． $\mathbf{(1 0 \%}$ ）The edges of K_{6}（a complete graph on 6 vertices ）are to be painted either red or blue． Show that for any arbitrary way of painting the edges there is a red K_{3}（a K_{3} with all its edges painted red ）or a blue K_{3} ．

3． $\mathbf{(1 0 \%)}$ ）Determine the sum

$$
\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n} .
$$

4．Let a_{r} denote the number of edges in a complete graph on r vertices．
（a）（ $\mathbf{1 0 \%}$ ）Derive a recurrence relation for a_{r} in terms of a_{r-1} ．
（b） $\mathbf{(1 0 \%)}$ Solve the recurrence relation．

5． $\mathbf{(1 0 \%)}$ Let $T: R^{2} \rightarrow R^{2}$ be defined by $\mathrm{T}(a, b)=(|a|, b)$ ．Show that T is not linear．

6．（ $\mathbf{1 0 \%}$ ）Find the value of c which makes it possible to solve the system

$$
\left\{\begin{array}{r}
x+y+2 z=2 \\
2 x+3 y-z=5 \\
3 x+4 y+z=c
\end{array}\right.
$$

7． $\mathbf{(1 0 \%})$ Find an orthonormal basis for the subspace spanned by $(1,-1,0,0),(0,1,-1,0)$ ，and （ $0,0,1,-1$ ）．

8．Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

（a） $\mathbf{(1 0 \%)}$ ）Find the rank and the eigenvalues of M ．
（b） $\mathbf{(1 0 \%)}$ Show that M is diagonalizable．

