1．The input，and output of the network are shown in Fig．1．Obtain the unknown element values．（20 \％）

Fig． 1

2．A linearly rising voltage is applied to the RLC network shown in Fig．2．How much energy is supplied by the source in one second？（ 20% ）

Fig． 2

3．For the circuit in Fig．3，
（a）Find the Thevenin equivalent circuit with respect to the terminals a ，b for the circuit shown in Fig．3．（10 \％）
（b）Find the load impedance Z if maximum average power is delivered to Z ．（ 5% ）
（c）Find the maximum average power delivered to Z ．（ 5% ）

Fig． 3

4．Let $i_{s}=5 u(-t)-15 u(t)$ in Fig．4．Find
（a）$V_{R}\left(0^{+}\right)$
（5\％）
（b）$\frac{d V_{C}\left(0^{+}\right)}{d t}$ （5\％）
（c）$\frac{d i_{L}\left(0^{+}\right)}{d t}$ （5\％）

Fig． 4

5．A balanced Y－connected load is supplied by a balanced power system in which $Z=10+j 10$
$\Omega, V_{a b}=100 \sqrt{6} \angle 0^{0}$ Volt，$V_{b c}=100 \sqrt{6} \angle-120^{\circ}$ and $V_{c a}=100 \sqrt{6} \angle+120^{\circ}$ Volt．Two wattmeters are arranged to measure the total power received by the load and the circuit is shown in Fig． 5.
（a）Find the reading value of wattmeter A ．（ 7% ）
（b）Determine the total power absorbed by the load．（8\％）

Fig． 5

6．In Fig．6，R_{1}, R_{2} ，and R_{3} are fixed．For what turns ratio is the output voltage maximum？ （10\％）

Fig． 6

