1. The input, and output of the network are shown in Fig. 1. Obtain the unknown element values. (20 %)

Fig. 1

2. A linearly rising voltage is applied to the RLC network shown in Fig. 2. How much energy is supplied by the source in one second? (20 %)

Fig. 2

- 3. For the circuit in Fig. 3,
 - (a) Find the Thevenin equivalent circuit with respect to the terminals a, b for the circuit shown in Fig. 3. (10 %)
 - (b) Find the load impedance Z if maximum average power is delivered to Z. (5 %)
 - (c) Find the maximum average power delivered to Z. (5 %)

Fig. 3

- 4. Let $i_{s} = 5u(-t) 15u(t)$ in Fig. 4. Find (a) $V_{R}(0^{+})$ (5%) (b) $\frac{dV_{C}(0^{+})}{dt}$ (5%) (c) $\frac{di_{L}(0^{+})}{dt}$ (5%) i_{S} $10\mu f$ + V_{C} ImH i_{L} $10\mu f$ + V_{C} Fig. 4
- 5. A balanced Y-connected load is supplied by a balanced power system in which Z = 10 + j10

$$\Omega$$
, $V_{ab} = 100\sqrt{6} \ge 0^{\circ}$ Volt, $V_{bc} = 100\sqrt{6} \ge -120^{\circ}$ and $V_{ca} = 100\sqrt{6} \ge +120^{\circ}$ Volt. Two

wattmeters are arranged to measure the total power received by the load and the circuit is shown in Fig. 5.

- (a) Find the reading value of wattmeter A. (7%)
- (b) Determine the total power absorbed by the load. (8%)

Fig. 5

第3頁,共3頁

6. In Fig. 6, R_1 , R_2 , and R_3 are fixed. For what turns ratio is the output voltage maximum? (10%)

Fig. 6