1．Consider a second order difference equation

$$
x(k+2)+0.3 x(k+1)+0.2 x(k)=u(k)
$$

where

$$
u(k)=1 ; \quad \text { for } \quad k=0,1,2, \ldots
$$

The initial conditions are assumed to be zeros．
（1）．Please find the transfer function．（5\％）
（2）．Please find the sequence $x(k), k \geq 0$ ．（15\％）

2．For the following state diagram of a system T，

（1）．Please write out the state equation of the system T．（10\％）
（2）．If the input $\mathrm{R}=0, \mathrm{~T}$ becomes a homogeneous system．Please indicate whether this homogeneous system is stable or not，and explain the reasons．（10\％）

3．For a magnetic ball suspension system，

$$
\begin{aligned}
& M \frac{d^{2} y}{d t^{2}}=M g-\frac{c i^{2}}{y} \\
& v=R i+L \frac{d i}{d t}
\end{aligned}
$$

where $R=1 \Omega, \quad M=0.1 \mathrm{Kg}, \quad L=0.01 \mathrm{H}, \quad g=32.2 \mathrm{~m} / \mathrm{sec}^{2}, \quad c=0.1 \mathrm{Kgm}^{2} / \mathrm{sce} e^{2} \mathrm{~A}^{2}$ ．
（1）Please Linearize the system at the equilibrium point with $y=0.5 \mathrm{~m}$ ．（ 10% ）
（2）Find the eigenvalues of this linearized system．（10\％）

4．For a system with the characteristic equation

$$
2 s^{4}+s^{3}+3 s^{2}+a s+10=0
$$

（1）．If $a=5$ ，indicate whether this system is stable or not and explain the reason．
（2）．Find the stable region for the parameter a ．（10\％）

5．For a unit feedback system，if the open－loop transfer function $G(s)$ ，

$$
G(s)=\frac{(1+0.5 s)}{(1+s)(1+2 s)}
$$

（1）．Find the damping ratio and natural frequency of the system．（5\％）
（2）．Let the input be $r(t)=2 u(t),(u(t)$ is a unit step function），what is the steady state error of this system．（5\％）
（3）．What kind of the controller can be used to eliminate the steady state error？Explain the reason．（ 10% ）

