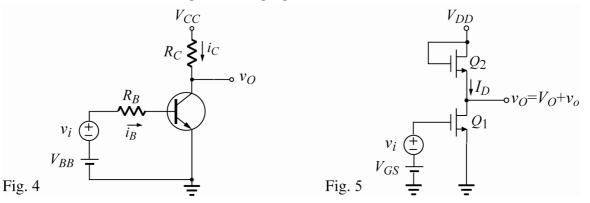
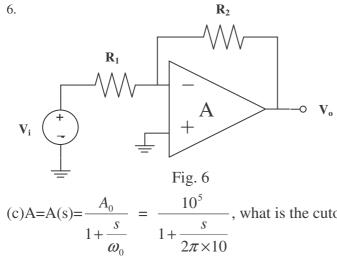

九十四學年度研究所碩士班考試入學 電機工程學系碩士班 - <u>電子學</u>考科

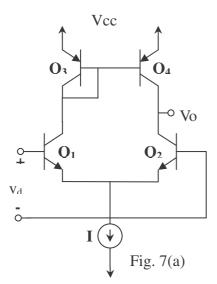
第1頁,共3頁

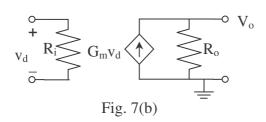

1. (5%) If $V_{D(ON)}=0.7$ V, draw the output waveform $v_{out}(t)$



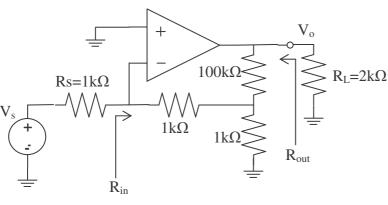
2. (10%) Logic circuits are shown in Fig. 2 and Fig. 3. Write down the Boolean functions of *Y* in terms of *A* and *B*?

- 3. (1) Draw the OP-Amp Wien bridge oscillator circuits with the components R_1 , R_2 , R_3 , R_4 , C_1 and C_2 . (5%)
 - (2) Determine the resistances ratio of the OP-Amp required (3%), and the oscillation frequency. (2%)
- 4. Fig. 4 shows a common-emitter circuit. The circuit parameters are : $\beta = 100$, $R_c = 6k\Omega$, $R_B = 50k\Omega$, $V_{CC} = 12V$, $V_{BB} = 1.5V$, $V_{BE} = 0.7V$, $V_T = 26mV$, $V_A = \infty$ and $v_i(t) = 0.5 \sin\omega t(V)$. Calculate the maximum and minimum values of $i_C(t)$ and $v_O(t)$. (10%) Draw one cycle of the waveforms $i_C(t)$ and $v_O(t)$ (5%).
- 5. Fig. 5 shows an NMOS IC amplifier with enhancement load. The parameters are : $V_{T1}=1V$, $V_{T2}=2V$, $W_1=45\mu$ m, $W_2=24\mu$ m, $L_1=5\mu$ m, $L_2=6\mu$ m, and $\mu_n C_{ox}=100\mu$ A/V², where V_T , W, L, μ_n , and C_{ox} are the threshold voltage, the channel width, the channel length, the mobility of the electrons in the inversion layer, and the oxide capacitance per unit area, respectively.
 - (1) Calculate the dc bias point (V_O and I_D) with $V_{DD}=10V$, $V_{GS}=3V$. (8%)
 - (2) Calculate the small signal voltage gain $A_v = v_o / v_i$. (2%)




The circuit shown in Fig. 6 is an inverting amplifier. The resistance of R_1 , R_2 are $1k\Omega$, 10K Ω respectively. Find the voltage gain V_o/V_i of this amplifier in each of the following cases. (a) OPA gain A= $\infty(3\%)$ (b) A=10⁵.(4%)

what is the cutoff frequency of this inverting amplifier?


7.

For the active-loaded differential amplifier of Fig. 7(a) when biased with a current I= 0.5 mA, if the transistors has current gain β = 200, Early voltage V_A = 100V, suppose the small-signal operation of the amplifier can be modeled by the models shown in Fig. 7(b), find the value of the differential input resistance R_i, transconductance G_m and output resistance R_o.(10%)

There are four basic feedback topologies of a feedback amplifier. Determine the feedback topology of the circuit displayed in Fig. 8 and find the voltage gain V_o/V_s , input resistance R_{in} and output resistance R_{out} by using the feedback method. The values of the related parameters of the OPA are specified as follows, the

open loop gain $\mu = 10^4$ V/V, differential input resistance R_{id} = 100k Ω and output resistance r_o= 1k Ω .(15%)

The circuit in Fig. 9 is a Colpitts oscillator, show that the resonance frequency ω_0 is

$$\omega_0 = \frac{1}{\sqrt{L\frac{C_1C_2}{C_1+C_2}}}$$

(10%)

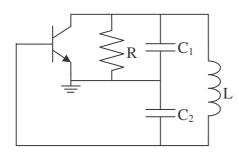


Fig. 9