1．（5\％）If $V_{D(O N)}=0.7 \mathrm{~V}$ ，draw the output waveform $v_{\text {out }}(t)$

Fig． 1

2．（10\％）Logic circuits are shown in Fig． 2 and Fig．3．Write down the Boolean functions of Y in terms of A and B ？

Fig． 2

3．（1）Draw the OP－Amp Wien bridge oscillator circuits with the components R_{1}, R_{2} ， $\mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{C}_{1}$ and C_{2} ．(5%)
（2）Determine the resistances ratio of the OP－Amp required（3\％），and the oscillation frequency．（2\％）

4．Fig． 4 shows a common－emitter circuit．The circuit parameters are ：$\beta=100, R_{C}=6 \mathrm{k} \Omega$ ， $R_{B}=50 \mathrm{k} \Omega, V_{C C}=12 \mathrm{~V}, V_{B B}=1.5 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}, V_{T}=26 \mathrm{mV}, V_{A}=\infty$ and $v_{i}(t)=0.5 \sin \omega t(\mathrm{~V})$ ．Calculate the maximum and minimum values of $i_{C}(t)$ and $v_{O}(t)$ ．（ 10% ）Draw one cycle of the waveforms $i_{C}(t)$ and $v_{O}(t)(5 \%)$ ．

5．Fig． 5 shows an NMOS IC amplifier with enhancement load．The parameters are ：$V_{T 1}=1 \mathrm{~V}$ ， $V_{T 2}=2 \mathrm{~V}, W_{1}=45 \mu \mathrm{~m}, W_{2}=24 \mu \mathrm{~m}, L_{1}=5 \mu \mathrm{~m}, L_{2}=6 \mu \mathrm{~m}$ ，and $\mu_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ ，where V_{T}, W, L, μ_{n} ， and $C_{o x}$ are the threshold voltage，the channel width，the channel length，the mobility of the electrons in the inversion layer，and the oxide capacitance per unit area，respectively．
（1）Calculate the dc bias point（ V_{O} and I_{D} ）with $V_{D D}=10 \mathrm{~V}, V_{G S}=3 \mathrm{~V}$ ．(8%)
（2）Calculate the small signal voltage gain $A_{v}=v_{o} / v_{i}$ ．（2\％）

Fig． 4

Fig． 5

6.

Fig． 6

The circuit shown in Fig． 6 is an inverting amplifier．The resistance of $\mathrm{R}_{1}, \mathrm{R}_{2}$ are $1 \mathrm{k} \Omega, 10 \mathrm{~K} \Omega$ respectively．Find the voltage gain V_{0} / V_{i} of this amplifier in each of the following cases．
（a）OPA gain $\mathrm{A}=\infty$（3\％）
（b） $\mathrm{A}=10^{5} .(4 \%)$
（c） $\mathrm{A}=\mathrm{A}(\mathrm{s})=\frac{A_{0}}{1+\frac{s}{\omega_{0}}}=\frac{10^{5}}{1+\frac{s}{2 \pi \times 10}}$ ，what is the cutoff frequency of this inverting amplifier？
7.

For the active－loaded differential amplifier of Fig．7（a） when biased with a current $\mathrm{I}=0.5 \mathrm{~mA}$ ，if the transistors has current gain $\beta=200$ ，Early voltage $\mathrm{V}_{\mathrm{A}}=100 \mathrm{~V}$ ，suppose the small－signal operation of the amplifier can be modeled by the models shown in Fig．7（b），find the value of the differential input resistance R_{i} ，transconductance G_{m} and output resistance $\mathrm{R}_{0} .(10 \%)$

Fig．7（b）
8.

Fig． 8
9.

Fig． 9

There are four basic feedback topologies of a feedback amplifier． Determine the feedback topology of the circuit displayed in Fig． 8 and find the voltage gain $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}$ ， input resistance $\mathrm{R}_{\text {in }}$ and output resistance $\mathrm{R}_{\text {out }}$ by using the feedback method．The values of the related parameters of the OPA are specified as follows，the
open loop gain $\mu=10^{4} \mathrm{~V} / \mathrm{V}$ ， differential input resistance $\mathrm{R}_{\mathrm{id}}=$ $100 \mathrm{k} \Omega$ and output resistance $\mathrm{r}_{\mathrm{o}}=$ $1 \mathrm{k} \Omega$ ．（15\％）

The circuit in Fig． 9 is a Colpitts oscillator，show that the resonance frequency ω_{0} is

$$
\omega_{0}=\frac{1}{\sqrt{L \frac{C_{1} C_{2}}{C_{1}+C_{2}}}}
$$

