1．Find the general solution for each of the following differential equations．
（a）．$\frac{d y}{d x}=\frac{1+y^{2}+3 x^{2} y}{1-2 x y-x^{3}}$
（b）．$y^{\prime \prime}+y^{\prime}-2 y=5 t+e^{2 t}, \quad y(0)=y^{\prime}(0)=1$
2．Use the Laplace transforms to solve the given integral equation．

$$
y(t)=2-3 e^{-t}-\int_{0}^{t} e^{(t-\tau)} y(\tau) d \tau
$$

3．Use the Laplace transforms to solve the following equation．

$$
y^{\prime \prime}+y^{\prime}=g(t) \quad, \quad g(t)=\left\{\begin{array}{lr}
0 & 0 \leq t \leq 2 \\
5 & , t>2
\end{array}, \quad y(0)=y^{\prime}(0)=0\right.
$$

4．Find the inverse Laplace transforms of the following equation．

$$
F(s)=\frac{s+1}{(s+2)\left(s^{2}+2 s+26\right)}
$$

5．（a）．Find the Fourier series of the function $f(x)$ ， where $f(x)=x+\pi$ if $-\pi<x<\pi$ and $f(x+2 \pi)=f(x)$.
（b）．Using（a）to evaluate $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-\cdots=$ ？

6．（a）．Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
-1 & -2 \\
3 & 4
\end{array}\right]
$$

（b）．Using Cayley－Hamilton Theorem to evaluate A^{20} ．

7．（a）．Show that the function $f(z)=\tan \left(\frac{1}{z+1}\right)$ there is infinitely many singularities，only one of which is nonisolated．
（b）Evaluate $\oint_{C} \frac{z+3}{z(z-\pi)(z-7)} d z$ ，the contours C consists of the circle $|z|=6$ ，described in the positive direction，together with the circle $|z|=4$ ，described in the negative direction．

8．Find the Cauchy principal value of the integral $I=\int_{-\infty}^{\infty} \frac{3}{\left(x^{2}+1\right)(x-1)} d x$ ．

