九十三學年度研究所碩士班考試入學 生物化學考科

選擇題,每題2分。

第1頁,共6頁

1. Biological catalysts are					
(A) proteins exclusively		(B) RNA exclusively			
(C) DNA exclusively		(D) most proteins	(D) most proteins and some RNA		
2. Eukaryotic DNA					
(A) is found in the nucleus		(B) is found in the mitochondrion			
(C) is found in the chloroplast		(D) all of the above			
3. The major building blocks	for proteins are				
· ·	-	(\mathbf{C}) fotty o	aida	(\mathbf{D}) and \mathbf{z}	
(A) nucleotides	(B) amino acids	(C) fatty a	cius	(D) sugars	
4. A buffer solution at pH 5.0) has a ratio of [H	$[A]/[A^{-}]$ of 0.8. W	hat is the pI	Ka of the acid?	
(A) 4.1	(B) 4.5	(C) 4.8	Ĩ	(D) 4.9	
5. The main intracellular buf	fer system is				
(A) H_3PO_4/H_2PO_4	(B) H ₂ PO ₄ / HP	$PO_4^{2^-}$ (C) HPO_4^{2^-}	2^{-} / PO ₄ 3^{-}	(D) $H_3PO_4 / PO_4^{3^-}$	
6. Which amino acids contain	n sulfur?				
(A) cysteine and lysine		(B) cysteine and methionine			
(C) arginine and methionine		(D) cysteine and isoleucine			
7. The pKa values of the side	e chains of the con	mmon amino acids			
(A) are always at low pH		(B) are alv	ways at high pH		
(C) depend on the chemi	cal nature of the s	side chain	(D) are no	t known	
8. Two amino acids frequent	ly found in revers	se turns are			
(A) tyrosine and tryptophan		(B) serine and threonine			
(C) glycine and proline		(D) leucine and isoleucine			
9. At pH below 7, arginine has a net charge of					
(A) +2	(B) +1	(C) –1		(D) –2	
10. A peptide bond is formed by a reaction of two molecules of amino acids with the release of					
one molecule of					
(A) CO_2	(B) NH_3	(C) SO_2		$(D) H_2O$	

- 11. The binding of oxygen to hemoglobin differs from the oxygen-binding behavior of myoglobin because
 - (A) oxygen binding to hemoglobin is cooperative
 - (B) oxygen binding to myoglobin is cooperative
 - (C) hemoglobin is not an allosteric protein
 - (D) the oxygen-binding curve of hemoglobin is hyperbolic
- 12. The amino acid sequence of a polypeptide chain is a

(A) primary structure	(B) secondary structure
-----------------------	-------------------------

- (C) tertiary structure (D) quaternary structure
- 13. How many polypeptide chain(s) is (are) in one molecule of the collagen helix? (A) 1 (B) 2 (C) 3 (D) 4

14. A protein has an isoelectric point (pI)	of 7. The net charge of this protein will be
(A) + at pH 5 and – at pH 9	(B) - at pH 5 and + at pH 9
(C) + at both pH 5 and 9	(D) – at both pH 5 and 9

- 15. The fundamental difference between competitive and noncompetitive inhibition is
 - (A) the degree of cooperativity of the reaction
 - (B) the size of the active site of the enzyme
 - (C) the manner of binding of substrate to the enzyme
 - (D) the manner of binding of inhibitor to the enzyme
- 16. Many metabolic pathways involve multistep reactions. Consider the following pathway.

Feedback inhibition is usually associated with

- (A) the product of the final reaction, F, interacting with E1
- (B) F interacting with an allosteric site in E4
- (C) B interacting with an allosteric site in E1
- (D) all of the intermediates or products in the reaction interacting with the active site in E1
- 17. A enzyme can catalyzes a reaction because it can
 - (B) decrease the standard free energy
 - (C) increase the activation energy

(A) increase the standard free energy

(D) decrease the activation energy

18. Formation of an enzyme-substrate complex in an enzyme reaction is the

(A) first step	(B) second step	(C) third step	(D) fourth step
----------------	-----------------	----------------	-----------------

19. When $[S] = K_m$, then V =(A) V_{max} (B) $V_{max}/2$ (C) $V_{max}/3$ (D) $V_{max}/4$

20. The slope of the Lineweaver-Burk plot changes, but the *y* intercept does not (The *x* intercept also changes). What is this type of enzyme inhibition called?

(A) Competitive (B) non-competitive (C) un-competitive (D) mixed competitive

21. Membrane lipids in a lipid bilayer are held together by

- (A) hydrophobic interaction (B) hydrogen bonds
- (C) electrostatic forces (D) covalent bonds
- 22. In the sodium-potassium pump
 - (A) sodium is transported out of the cell and potassium into the cell, both against concentration gradients
 - (B) sodium is transported into the cell and potassium out of the cell, both against concentration gradients
 - (C) sodium is transported out of the cell and potassium into the cell, both in the same direction as concentration gradients
 - (D) sodium and potassium are both transported out of the cell against concentration gradient
- 23. How many carbon atoms does palmitate have?

- 24. E. coli replication on the lagging strand
 - (A) is carried out by DNA polymerase I
 - (B) is initially synthesized as Okazaki fragments
 - (C) is synthesized continuously
 - (D) has this DNA strand synthesized in a 3'-5' direction
- 25. The promoter site is
 - (A) the start site for transcription in DNA
 - (B) the binding site for regulatory proteins that stimulate transcription
 - (C) the general region of DNA downstream from the start site
 - (D) the site on DNA at which RNA polymerase binds to initiate transcription

26. The presence of reverse transcriptase in a cell is an indication of					
(A) DNA repair	(A) DNA repair		(B) presence of a retrovirus		
(C) primer synthesi	S	(D) primer removal			
27. Cytosine is a					
(A) base	(B) nucleoside	(C) nucleotide	(D) nucleic acid		
		(0) 100100100			
28. The structure of the	double helix, proposed	by Watson and Crick	in 1953, is a		
(A) A-DNA	(B) B-DNA	(C) Y-DNA	(D) Z-DNA		
		(0) 1 21(11			
29. The formylation of	methionine in prokaryo	otes			
•			rmylated when bound to		
(A) depends on two one form and no		e metholime can be io	initylated when bound to		
		a mathionina can ba fo	rmylated when bound to		
either one	unierent uxivAs, wher	e methonne can be to	implated when bound to		
(C) depends on one	tRNA, where methion	ine is formylated after	binding		
	ore methionine is bound	·	C		
(-) F					
30. Protein synthesis in	prokaryotes always sta	arts with			
(A) a methionine residue		(B) a formylmethionine residue			
		(D) no specific residue			
· · ·		- · ·			
31. The anticodon for a	particular tRNA specif	fic for tyrosine is 5'-GU	JA-3'. What is the		
corresponding code	on in mRNA?				
· ·	(B) 5'-UAC-3	(C) 5'-AUG-3	(D) 5'-TAC-3		
32. The smallest of the	biologically important	RNA is			
(A) mRNA	(B) tRNA	(C) rRNA	(D) snRNA		
		(0) 11(1)			
33. How many stereois	omers are possible for a	linear aldonantosa?			
•	-	-	(\mathbf{D}) 16		
(A) 4	(B) 8	(C) 12	(D) 16		
34. Glucose normally exists as a cyclic molecule. The C-1 carbon atom becomes a new chiral					
center and is called					
(A) aromatic atom	(B) aliphatic ato	m (C) acidic atom	(D) anomeric atom		
35. The step that commits the cell to metabolize glucose is catalyzed by					
(A) hexokinase	(B) phophoglucomuta	se (C) aldose	(D) phosphofructokinase		

36. Amino sugars have a functional group that does not occur in other sugars. This functional group has the structure of

(A)
$$-NH_2$$
 (B) $-COOH$ (C) $-OH$ (D) $-CHO$

- 37. Glycolysis
 - (A) does not require oxygen to generate energy
 - (B) requires oxygen to generate energy
 - (C) is inhibited by oxygen
 - (D) rate is increased in the presence of oxygen
- 38. Which of the following exercise(s) allosteric control in the reaction of phosphosfructokinase?(A) ATP (B) fructose 2,6-*bis*phosphate (C) both of the above (D) neither of the above
- 39. In gluconeogenesis, the initial reaction converts pyruvate to(A) oxaloacetate(B) acetyl-CoA(C) phosphoenolpyruvate(D) lactate

40. In the Cori cycle

- (A) lactic acid is transported from the liver to muscle by the blood
- (B) lactic acid is transported from the liver to the kidneys by the blood
- (C) glycolysis takes place in muscle and gluconeogenesis in the liver
- (D) glycolysis takes place in the liver and gluconeogenesis in muscle
- 41. A cell in an active metabolic state has
 - (A) a high (ATP/ADP) and a high (NADH/NAD+) ratio
 - (B) a high (ATP/ADP) and a low (NADH/NAD+) ratio
 - (C) a low (ATP/ADP) and a low (NADH/NAD+) ratio
 - (D) a low (ATP/ADP) and a high (NADH/NAD+) ratio
- 42. Which of the following is a source of NADPH?
 - (A) the pentose phosphate pathway
 - (B) a series of reactions in which oxaloacetate is reduced to malate following by oxidative decarboxylation of the malate to pyruvate
 - (C) both of the above
 - (D) neither of the above
- 43. The cytochrome that passes electrons directly to oxygen is
 - (A) the cytochrome a/a3 complex (B) cytochrome b
 - (C) cytochrome c (D) cytochrome cl

- 44. A characteristic of the glycerol phosphate shuttle is
 - (A) it shuttles NADH across the mitochondrial membrane to yield 2.5 ATP / NADH.
 - (B) it shuttles the electrons from NADH across the mitochondrial membrane to FADH2, yielding 1.5 ATP / NADH.
 - (C) it only operates efficiently at high levels of NADH.
 - (D) malate is a key component in the shuttle process.
- 45. Biosynthesis of lipids typically takes place
 - (A) in the mitochondrial matrix (B) in the cytosol
 - (C) on the endoplasmic reticulum (D) in the Golgi apparatus

46. A repeated sequence of reactions successively cleaves two-carbon units from the fatty acid, starting from the carboxyl end. This process is called(1) a close of the carboxyl end of the

(A) α oxidation (B) β oxidation (C) γ oxidation (D) θ oxidation

47. Ammonia is toxic and it must be incorporated into biologically useful compounds. Which two amino acids are of central importance in the process?

- (A) aspartate and asparagines (B) glutamate and glutamine
- (C) leucine and isoleucine (D) alanine and phenylalanine

48. Deoxyribonucleotids for DNA synthesis are mainly produced by the reduction of

- (A) ribonucleosides (B) ribonucleoside monophosphates
- (C) ribonucleoside diphosphates (D) ribonucleoside triphosphates
- 49. In the final stages of aerobic metabolism, electrons are transferred from NADH to (A) O₂ (B) CO₂ (C) H₂ (D) N₂

50. A second messenger is

- (A) a substance that brings about a desired effect in a cell as a result of a hormone binding to its receptor on the cell surface.
- (B) a hormone that acts on a target cell, not one of the releasing factors or trophic hormones that act on specific endocrine glands.
- (C) a hormone that affects the DNA of the target cell.
- (D) a specialized form of mRNA.