國 立 宜 蘭 大 學

114 學年度碩士班考試入學招生

※物理化學

(含熱力學與動力學)試題

(化學工程與材料工程學系碩士班)

准考證號碼:

《作答注意事項》

- 1. 請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2. 考試時間:100分鐘。
- 3. 本試卷共有 9 題,共計 100 分。
- 4. 請將答案寫在答案卷上。
- 5. 考試中禁止使用手機或其他通信設備。
- 6. 考試後,請將試題卷及答案卷一併繳交。
- 7. 本試卷採雙面影印,請勿漏答。
- 8. 本考科可使用電子計算機(廠牌、功能不拘)。

114 學年度碩士班考試入學招生 化學工程與材料工程學系碩士班 物理化學(含熱力學與動力學)考科

第1頁,共2頁

1. Explain the following items:

- (a) Boyle's law (4%)
- (b) The van der Waals equation of state (4%)
- (c) Boyle temperature (4%)
- (d) Efficiency of a reversible Carnot engine (4%)
- (e) The colligative properties (4%)
- 2. An ideal gas at 298.15 K and 1 bar is expanded in a reversible adiabatic process to a final pressure of 1/2 bar. Calculate q per mol, w per mole, and ΔU . (assume: $C_v = \frac{3}{2}R$, $C_p = \frac{5}{2}R$) (10%)
- 3. One mole of an ideal gas is compressed isothermally and reversibly at 100 °C from a pressure of 2 bar to 10 bar. Calculate (a) q, (b) w, (c) ΔH , (d) ΔS , and (e) ΔG of this process. (10%)
- 4. (a) Derive the Gibbs-Helmholtz equation $\left[\frac{\partial}{\partial T}\left(\frac{\Delta G}{T}\right)\right]_P = -\frac{\Delta H}{T^2}$ from $\left(\frac{\partial \Delta G}{\partial T}\right)_P = -\Delta S$. (5%)
 - (b) Derive the van't Hoff equation $\frac{d\ln K_P^0}{d(\frac{1}{T})} = -\frac{\Delta H^0}{R}$ from Gibbs-Helmholtz equation. (5%)
- 5. The boiling point of hexane at 101.325 kPa is 341.9 K. What is the boiling point at 100 kPa? (Given: The vapor pressure of hexane at 322.8 K is 53.32 kPa.) (5%)
- 6. (a) Determine the amount and composition (in percentage) of each phase in a Cu-40% Ni alloy at 1300 °C and 1250 °C. (5%)
 - (b) Determine the degree of freedom of a Cu-40% Ni alloy at 1300 °C and 1250°C. (5%)

114 學年度碩士班考試入學招生 化學工程與材料工程學系碩士班 物理化學(含熱力學與動力學)考科

第2頁,共2頁

- 7. (a) Derive the second-order equation of A+B→Z. The initial concentrations of A and B are both a₀. (5%)
 - (b) Derive the second-order equation of A+B \rightarrow Z. The initial concentrations of A and B are a_0 and b_0 , respectively. (10%)
- 8. A reaction has a rate constant of $k=1.77 \times 10^{-6} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 25 °C and an activation energy of 2000 J mol⁻¹.
 - (a) What order is the reaction? (Explain why) (5%)
 - (b) What is the value of the rate constant at 100 °C? (5%)
- 9. (a) Derive the half-life of a first-order reaction is $t_{1/2} = \frac{\ln 2}{k}$. (5%)
 - (b) The half-life of 60 Co is 1.9×10^3 days. What is the rate constant for the decay process? (5%)