1．（1）Vector $\overrightarrow{\mathrm{A}}=(1,-2,2)=1 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ ， please try to find the unit vector（單位向量）of \vec{A} ．（5\％）
（2）Two vectors $\stackrel{\rightharpoonup}{\mathrm{B}}=(2,3,-4)$ and $\overrightarrow{\mathrm{C}}=(1,-1,1)$ ．Known the $\theta=\cos ^{-1}(\mathrm{x})$ is the angle between this two vectors， please try to find the x ．［Hint：Vector dot product］（5\％）

2．Known a matrix $\mathbf{A}=\left[\begin{array}{cc}\cos x & -\sin x \\ \sin x & \cos x\end{array}\right]$ ，please try to find $\mathbf{A}^{-1},\left(\mathbf{A}^{-1}\right)^{2}$ and then induce to find $\left(\mathbf{A}^{\mathbf{- 1}}\right)^{\mathrm{n}}$ ．［Ps． \mathbf{A}^{-1} is defined as Inverse Matrix of \mathbf{A} ，and $\left.\mathbf{A A}^{\mathbf{- 1}}=\mathbf{I}\right][$ Hint： $\sin (a+b)=\sin a \times \cos b+\sin b \times \cos a ; \cos (a+b)=\cos a \times \cos b-\sin a \times \sin b] \quad(10 \%)$

3．Please try to find the solution of each following ODE respectively．
（1）$y^{\prime}=\frac{d y}{d x}=-\frac{2 x \sin (3 y)}{3 x^{2} \cos (3 y)}(10 \%)$
（2）$y^{\prime}+y=y^{3} \quad(10 \%)$
（3）$y^{\prime \prime}-3 y^{\prime}+2 y=\sin \left(e^{-x}\right)(10 \%)$
（4）$(x-2)^{2} y^{\prime \prime}+3(x-2) y^{\prime}+y=x \quad(10 \%)$
（5）Simultaneous ODE（ 10% ）

$$
\begin{aligned}
& x^{\prime \prime}(\mathrm{t})-4 \mathrm{x}(\mathrm{t})+\mathrm{y}(\mathrm{t})-2 \mathrm{y}^{\prime}(\mathrm{t})=\mathrm{t} \\
& 2 \mathrm{x}^{\prime}(\mathrm{t})+\mathrm{x}(\mathrm{t})+\mathrm{y}^{\prime \prime}(\mathrm{t})=0
\end{aligned}
$$

［Hint：The method of differential operator（微分算子法或逆運算法）］

4．Known the $y_{1}=e^{2 x}$ is one homogeneous solution of ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$ ，please try to prove the $y_{2}=x e^{2 x}$ is also the solution of this ODE by using the Reduction of order method（降階法）［Hint：Let $\mathrm{y}_{2}=\mathbf{u} \times \mathrm{y}_{1}$ and y_{1} is a known solution］（10\％）

5．Please try to prove following equation（eq．1）by using the Fourier series expansion method for a periodic function $f(x)=x^{2}$ where $f(x+2 \pi)=f(x)$ and $-\pi \leq x \leq \pi$ ．［ Hint：（i） $\mathrm{f}(\pi)=\pi^{2}$ ；（ii） $\left.\cos (\mathrm{n} \pi)=(-1)^{\mathrm{n}}\right]$

$$
\left.\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots \quad \text { eq. } 1\right) \quad(10 \%)
$$

6．Please try to find the solution $(u(x, t))$ of following PDE（wave equation） with B．C．and I．C．

B．C．$u(0, \mathrm{t})=\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}\sin (\mathrm{t}) & 0 \leq \mathrm{t} \leq 2 \pi \\ 0 & \text { other }\end{array}\right\}$
$\left[\right.$ Ps．$\left.u_{t} \equiv \frac{\partial \mathrm{u}}{\partial \mathrm{t}}\right][$ Hint：（i）Laplace
$\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ and $\lim _{x \rightarrow \infty} u(x, t)=0(t>0)$
I．C．$u(x, 0)=0$ and $u_{t}(x, 0)=0$
Transform；（ii） $\left.\int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{ax}} \sin (\mathrm{x}) \mathrm{dx}=\frac{1-\mathrm{e}^{-2 \pi \mathrm{a}}}{1+\mathrm{a}^{2}}\right]$
（10\％）

